
ComposerJS

AcceleratXR, Inc.

Aug 27, 2021

CONTENTS

1 About Composer 3

2 Features 5

3 Installation 7

4 OpenAPI Extensions 9
4.1 Datastore Objects . 9
4.2 Datastore Object . 9
4.3 Schema Object . 10
4.4 Schema Properties . 11
4.5 Path Item Object . 12
4.6 Operation Object . 14

5 Authentication 17
5.1 JWT Payload . 17
5.2 Server Authentication . 17

6 Creating a Server 19
6.1 Building the Server . 19
6.2 Running the Server . 19

7 Project Structure 21
7.1 src/jobs . 23
7.2 src/models . 23
7.3 src/routes . 23
7.4 src/config.ts . 23
7.5 src/server.ts . 23
7.6 test . 24

8 Route Handlers 25
8.1 Anatomy of a Route . 25
8.2 Route Decorators . 27

9 Built-Ins 31
9.1 ModelRoute . 31

10 Default Routes 35
10.1 Access Control Lists . 35
10.2 Default Index . 36
10.3 OpenAPI Documentation . 36

i

10.4 Prometheus Metrics . 36

11 Debugging 37
11.1 Docker Compose . 37
11.2 Debugging in Visual Studio Code . 37

12 Features 39

13 Getting Started 41
13.1 Step 1 . 41
13.2 Step 2 . 42
13.3 Step 3 . 42

ii

ComposerJS

CONTENTS 1

ComposerJS

2 CONTENTS

CHAPTER

ONE

ABOUT COMPOSER

The roots of the Composer.js project date back to 2018 when Jean-Philippe Steinmetz began work on a new MMO
gaming platform called AcceleratXR. It was decided early on that this project would have to take a micro-service
approach in order to reach levels of scalability and throughput required. Each system or feature supported by the
platform needed to be built quickly, reusing as much code as possible, while providing a high level of consistency and
reliability. It was then that Jean-Philippe decided a code generator tool was the best way to go.

Upon first discovering OpenAPI Jean-Philippe was very excited, especially at the prospect of pre-made code generation
tools provided by the community. However, these tools quickly proved inadequate to build the complex and mature
platform he was making. So he began to tinker on his own. The first version of Composer (then called axr-generator)
was crude. The tool would copy a complete working service project from a basic template including all service classes
and utilities. This meant that every micro-service project had the same duplicated code. While this was great for
productivity it quickly became an enormous burden for code maintainability. If a bug was found in the core code, each
project had to be re-generated or merged. This was not a sustainable path for development.

Upon making a transition to TypeScript the tools had begun to evolve and take shape. All common functionality were
now placed in libraries that could be added as dependencies and updated with ease. All of the core functionality was
abstracted away from the service itself and leveraged runtime file scanning and decorators to parse the desired behavior.
The code generator tool was modified to only create the minimum files necessary for a given project; the models and
route handlers.

As more and more features were added to the framework it became apparent that the project was becomming unique
and special. So Jean-Philippe and the rest of the AcceleratXR team decided to rename the system to Composer.js and
release it to the community so that everyone can build professional RESTful API services faster, with more consistency
and with enterprise features.

3

https://goaxr.com

ComposerJS

4 Chapter 1. About Composer

CHAPTER

TWO

FEATURES

Composer comes with a powerful feature set out of the box and is easily extended to provide additional capability.

• Built on OpenAPI

• HTTP 1.x/2.x Web Server

• WebSocket Support

• Global Configuration

• Dependency Injection

• Built-in behaviors for common REST API actions

• Built-in ORM layer

• Document Version Tracking

• MongoDB support

• Redis support

• 2nd Level Caching

• Authentication

• Role Based Access Control

• Prometheseus metrics

5

ComposerJS

6 Chapter 2. Features

CHAPTER

THREE

INSTALLATION

Installing Composer is very easy. From any terminal or command line simply run the following command.

1 yarn global add @composer-js/cli

Once complete can now run composer.

1 composer --help

7

ComposerJS

8 Chapter 3. Installation

CHAPTER

FOUR

OPENAPI EXTENSIONS

Every Composer project starts with an OpenAPI specification file. OpenAPI is a standard, language-agnostic, document
format for describing RESTful APIs. It is from this document that both server and client code can be easily generated
using the CLI tool. This enables developers to save time on initial project creation as well as providing consistent and
well-documented APIs for others to use long after the project is deployed.

The OpenAPI specification is somewhat limited, however, and avoids describing certain details about the implemen-
tation of a RESTful API. Details that a code generator and framework like Composer must have in order to do its job
properly. Therefore, we have extended the specification to add several new features.

Click here for an example.

4.1 Datastore Objects

Holds a set of datastore connection configurations. All objects defined within the x-datastores object are copied to
the service’s config.ts file. Schema objects desiring to be bound to a given Datastore Object must explicitly reference
it using the x-datastore field.

Example

1 components:
2 x-datastores:
3 mongodb:
4 type: mongodb
5 url: mongodb://localhost

4.2 Datastore Object

Holds the name and associated configuration for a particular datastore connection. All properties defined in the object
are copied to the service’s config.ts file. Configuration options should conform to the TypeORM Connection Op-
tions. Desired Schema objects that are to be bound to a given Datastore object must be explicitly referenced with the
x-datastore field where the value matches the name of the object.

Example

1 components:
2 x-datastores:
3 mongodb:
4 type: mongodb
5 url: mongodb://localhost

9

https://swagger.io/specification/
https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml
https://typeorm.io/#/connection-options
https://typeorm.io/#/connection-options

ComposerJS

4.3 Schema Object

The following extensions apply to Schema definitions.

4.3.1 x-baseClass

Default Value: null

The x-baseClass field is applied to a Schema to identify the base class behavior that the generated Schema class will
inherit. There are three possible values presently supported by Composer.

Possible Values:

• BaseMongoEntity - Provides base behavior for all Schema classes that will be stored in a collection of a Mon-
goDB database.

• BaseSQLEntity - Provides base behavior for all Schema classes that will be stored in a SQL database.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb

4.3.2 x-datastore

Default Value: null

The x-datastore field is applied to a Schema to identify which database connection the schema will be bound to.
The name of the database connection must match a defined Datastore Object.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb

4.3.3 x-ignore

Default Value: false

The x-ignore field is applied to a Schema Property to indicate that it should be ignored from code generation.

Example

1 components:
2 schemas:
3 Order:

(continues on next page)

10 Chapter 4. OpenAPI Extensions

https://swagger.io/specification/#schema-object
https://swagger.io/specification/#schema-object
https://swagger.io/specification/#schema-object
https://swagger.io/specification/#schema-object

ComposerJS

(continued from previous page)

4 type: "object"
5 x-ignore: true

4.4 Schema Properties

The following extensions have been added to Schema Object Property definitions.

4.4.1 x-identifier

Default Value: false

The x-identifier field is applied to a Schema Property to indicate that the field is a unique identifier within the
database and should be indexed and must be unique.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb
7 properties:
8 name:
9 type: "string"

10 x-identifier: true
11 x-unique: true
12 nullable: false

4.4.2 x-unique

Default Value: false

The x-unique field is applied to a Schema Property to indicate that the field is a unique identifier within the database
and must be unique.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb
7 properties:
8 name:
9 type: "string"

10 x-identifier: true
11 x-unique: true
12 nullable: false

4.4. Schema Properties 11

https://swagger.io/specification/#schema-object
https://swagger.io/specification/#schema-object
https://swagger.io/specification/#schema-object

ComposerJS

4.5 Path Item Object

The following extensions apply to Path Item Object definitions.

4.5.1 x-name

Default Value: null

The x-name field is applied to a Path Item Object. It defines the unique name of the path item and the name of the
generated code route handler class. This field is superseded by the x-schema field.

Example

1 paths:
2 /user/login:
3 x-name: Auth
4 get:
5 description: Authenticates the user using HTTP Basic and returns a JSON Web␣

→˓Token access token to be used with future API requests.
6 x-name: login
7 responses:
8 "200":
9 description: The JSON Web Token to be used for all future requests.

10 content:
11 application/json:
12 schema:
13 $ref: "#/components/schemas/authToken"

Generated Code

1 /**
2 * Handles all REST API requests for the endpoint `/user/login`.
3 *
4 * @author <AUTHOR>
5 */
6 @Route("/user/login")
7 class AuthRoute {
8 @Config
9 protected config: any;

10 @Logger
11 protected logger: any;
12

13 /**
14 * Initializes a new instance with the specified defaults.
15 */
16 constructor() {
17 }
18 ...
19 }

12 Chapter 4. OpenAPI Extensions

https://swagger.io/specification/#path-item-object
https://swagger.io/specification/#path-item-object

ComposerJS

4.5.2 x-schema

Default Value: null

The x-schema field is applied to a Path Item Object. It defines the Schema that the path item is bound to. This
supersedes the x-name field.

Example

1 paths:
2 /pet:
3 x-schema: Pet
4 get:
5 description: "Multiple Pet objects"
6 x-name: "find"
7 responses:
8 "200":
9 description: A list of Pet objects.

10 content:
11 application/json:
12 schema:
13 type: "array"
14 items:
15 $ref: "#/components/schemas/Pet"

Generated Code

1 /**
2 * Handles all REST API requests for the endpoint `/pet`.
3 *
4 * @author <AUTHOR>
5 */
6 @Model(Pet)
7 @Route("/pet")
8 class PetRoute extends ModelRoute<Pet> {
9 @Config

10 protected config: any;
11 @Logger
12 protected logger: any;
13

14 @MongoRepository(Pet)
15 protected repo?: Repo<Pet>;
16

17 /**
18 * Initializes a new instance with the specified defaults.
19 */
20 constructor() {
21 super();
22 }
23 ...
24 }

4.5. Path Item Object 13

https://swagger.io/specification/#path-item-object

ComposerJS

4.6 Operation Object

The following extensions apply to Operation Object definitions.

4.6.1 x-after

Default Value: []

The x-after field is applied to a Operation Object when it is desirable to execute one or more middleware functions
after the primary endpoint handler has finished. The value is an array of strings, each being the name of the function
to execute.

Example

1 /user:
2 x-schema: User
3 post:
4 description: Create a new User.
5 x-name: create
6 x-before:
7 - validate
8 x-after:
9 - prepareOutput

10 requestBody:
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/User"
15 responses:
16 "201":
17 description: The newly created User.
18 content:
19 application/json:
20 schema:
21 $ref: "#/components/schemas/User"

Generated Code

1 /**
2 * Create a new User.
3 */
4 @Auth(["jwt"])
5 @Before(["validate"])
6 @After(["prepareOutput"])
7 @Post()
8 private async create(obj: User, @AuthUser user?: JWTUser): Promise<User> {
9 const newObj: User = new User(obj);

10

11 throw new Error("This route is not implemented.");
12 }

14 Chapter 4. OpenAPI Extensions

https://swagger.io/specification/#path-item-object
https://swagger.io/specification/#path-item-object

ComposerJS

4.6.2 x-before

Default Value: []

The x-before field is applied to a Operation Object when it is desirable to execute one or more middleware functions
before the primary endpoint handler has finished. The value is an array of strings, each being the name of the function
to execute.

Example

1 /user:
2 x-schema: User
3 post:
4 description: Create a new User.
5 x-name: create
6 x-before:
7 - validate
8 x-after:
9 - prepareOutput

10 requestBody:
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/User"
15 responses:
16 "201":
17 description: The newly created User.
18 content:
19 application/json:
20 schema:
21 $ref: "#/components/schemas/User"

Generated Code

1 /**
2 * Create a new User.
3 */
4 @Auth(["jwt"])
5 @Before(["validate"])
6 @After(["prepareOutput"])
7 @Post()
8 private async create(obj: User, @AuthUser user?: JWTUser): Promise<User> {
9 const newObj: User = new User(obj);

10

11 throw new Error("This route is not implemented.");
12 }

4.6. Operation Object 15

https://swagger.io/specification/#path-item-object

ComposerJS

4.6.3 x-name

Default Value: null

The x-name field is applied to a Operation Object. It defines the unique name of the operation and the function name
of the generated code for the endpoint handler.

Example

1 paths:
2 /pet:
3 x-schema: Pet
4 get:
5 description: "Multiple Pet objects"
6 x-name: "find"
7 responses:
8 "200":
9 description: A list of Pet objects.

10 content:
11 application/json:
12 schema:
13 type: "array"
14 items:
15 $ref: "#/components/schemas/Pet"

Generated Code

1 /**
2 * Multiple Pet objects
3 */
4 @Get()
5 private async find(@AuthUser user?: JWTUser): Promise<Array<Pet>> {
6 throw new Error("This route is not implemented.");
7 }

16 Chapter 4. OpenAPI Extensions

https://swagger.io/specification/#path-item-object

CHAPTER

FIVE

AUTHENTICATION

All Composer projects leverage JSON Web Tokens (JWT) as the primary mechanism for user authentication due to its
speed, flexibility and security robustness. As Composer is first and foremost a framework that was designed for building
highly scalable, distributed, micro-services and platforms the distributed nature of JWT makes it an easy choice as it
eliminates any cross-talk to a central authentication server to validate incoming requests from a user.

5.1 JWT Payload

In order for this to work correctly, all JWT tokens must be formatted in a particular way in order for Composer services
to be able to decode them properly. As such the token’s payload must contain a profile property which contains
at least a uid to uniquely identify the user as well as an optional list of roles which will determine the available
permissions the user has to perform actions within the service.

{
"profile": {

"uid": "3b61f36b-8254-4a7a-ae36-33459692127d",
"roles": []

}
}

Different services may choose to require additional properties within the profile but these are the ones Composer
uses internally to perform all of its work.

Optionally, a token’s profile payload may be encrypted to provide an additional level of security.

5.2 Server Authentication

By default, all Composer services come with a built-in authentication handler for JWT authentication tokens. Tokens
may be passed to the service by one of three methods; the Authorization header, the cookie header, or the jwt_token
query parameter.

17

ComposerJS

5.2.1 Authorization Header

A Composer service will automatically decode a JWT token and attempt to validate it when an Authorization header
is included with a request containing either the Bearer or jwt type indicator.

Example

GET /path HTTP/1.1
Host: composerjs.io
Authorization: Bearer 0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

GET /path HTTP/1.1
Host: composerjs.io
Authorization: jwt 0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

5.2.2 Cookie Header

Composer also recognizes cookies with the name jwt that are passed in to the HTTP request.

Example

GET /path HTTP/1.1
Host: composerjs.io
Cookie: jwt=0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

5.2.3 Query Parameter

Sometimes it is not possible to pass the authentication token via a header. This is common in debugging scenarios or
on platforms that don’t allow custom headers for HTTP clients. In such a case you can also pass in the token using the
special jwt_token query parameter.

Example

GET /path?jwt_token=0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0 HTTP/1.
→˓1
Host: composerjs.io

18 Chapter 5. Authentication

CHAPTER

SIX

CREATING A SERVER

The first thing to do is a create the OpenAPI specification file needed to describe the Composer server.

Click here for an example.

Once your spec file is complete, simply run it through the Composer CLI tool, specifying nodejs as the language and
server as the type.

1 composer -i ./service.yaml -o . -t server -l nodejs

In the above example we defined our schema in the file service.yaml and told Composer to generate a new project
in the current directory.

6.1 Building the Server

Before you can build the server project you will need to install the project dependencies.

1 yarn install

After that simply run yarn build.

1 yarn build

6.2 Running the Server

All Composer projects come pre-configured to be run with Docker Compose.

1 docker-compose build
2 docker-compose run

Once the system is up and running you’ll see log output such as the following.

1 server_1 | 2020-05-30T23:35:10.725Z info: Registered Route: GET /
2 server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: POST /acls
3 server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: DELETE /acls/:id
4 server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: GET /acls
5 server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: GET /acls/:id
6 server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: PUT /acls/:id
7 server_1 | 2020-05-30T23:35:10.729Z info: Registered Route: GET /metrics

(continues on next page)

19

https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml
https://docs.docker.com/compose/

ComposerJS

(continued from previous page)

8 server_1 | 2020-05-30T23:35:10.729Z info: Registered Route: GET /metrics/:metric
9 server_1 | 2020-05-30T23:35:10.729Z info: Scanning for routes...

10 server_1 | 2020-05-30T23:35:10.741Z info: Registered Route: GET /user/login
11 server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: GET /user/login/user/logout
12 server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: GET /store/order
13 server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: POST /store/order
14 server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: GET /store/order/:id
15 server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: PUT /store/order/:id
16 server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: DELETE /store/order/:id
17 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: GET /pet
18 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: POST /pet
19 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: DELETE /pet
20 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: GET /pet/:id
21 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: PUT /pet/:id
22 server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: DELETE /pet/:id
23 server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: GET /user
24 server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: POST /user
25 server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: DELETE /user
26 server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: GET /user/:id
27 server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: PUT /user/:id
28 server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: DELETE /user/:id
29 server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: GET /user/count
30 server_1 | 2020-05-30T23:35:10.746Z info: Initializing routes...
31 server_1 | 2020-05-30T23:35:10.778Z info: Listening on port 3000...
32 server_1 | 2020-05-30T23:35:10.784Z info: Starting service MetricsCollector...

20 Chapter 6. Creating a Server

CHAPTER

SEVEN

PROJECT STRUCTURE

Once you’ve generated your NodeJS server project with Composer you’ll want to familiarize yourself with its structure.

21

ComposerJS

The majority of the important bits are in the src folder. So let’s focus on that first.

22 Chapter 7. Project Structure

ComposerJS

7.1 src/jobs

The jobs folder contains TypeScript classes that provide background services that run at a scheduled interval. Each
Composer project comes with one default background job called the MetricsCollector. The server will automati-
cally pick up any class within this folder and load it as a background job on startup.

7.2 src/models

At startup the server will automatically scan and load all files defined in this folder as data model definitions. Each data
model class must be decorated with Composer and TypeORM decorators as Composer uses the TypeORM system to
manage storage of all data model objects. Composer will have automatically generated all data models defined in the
OpenAPI specification as schemas, adding the desired decorators that were specified in the OpenAPI file.

Each generated model class also features a constructor that takes a single object as its sole argument. This serves as a
simple copy constructor which enforces the desired structure of the data model, throwing away any additional undesired
data that is passed to it.

7.3 src/routes

The routes folder is where most of the magic happens. Each file in this folder is automatically loaded by the server
at startup as well. Each file corresponds to one or more Path Item objects in the OpenAPI specification file. When
the x-schema field is used for a Path Item, then all corresponding path items associated with a given data model are
grouped into one class named <Schema>Route.ts. If the x-name was used then all corresponding path items that
specified the same name are grouped into a single class named <Name>Route.ts.

7.4 src/config.ts

The config.ts file is where all the global application configuration is stored. This contains everything from the
background jobs to the datastores and JWT authentication information. The server leverages the nconf configuration
system to make defining and accessing configuration variables simple. The resulting config object is automatically
injected into each Route class via the @Config decorator.

7.5 src/server.ts

The server.ts file is the entry point of the server and is the first script run. It contains simple and common func-
tionality needed to initialize the global configuration, system logger, background service manager and the Composer
Server itself.

7.1. src/jobs 23

https://www.npmjs.com/package/nconf

ComposerJS

7.6 test

The test folder contains all unit tests for the project. Composer is pre-configured to use the jest unit test framework.
Composer automatically generates unit test files for each file in the src/routes folder. However, these tests are not
complete and must be modified.

24 Chapter 7. Project Structure

https://jestjs.io/

CHAPTER

EIGHT

ROUTE HANDLERS

Route Handlers are a collection of ExpressJS middleware functions whose job it is to process an incoming request for
a given RESTful endpoint. Collections of handlers are grouped together by a common name or schema, depending on
the OpenAPI specification defined.

Composer makes heavy use of both functional and aspect oriented programming techniques. Each Operation defined in
the OpenAPI specification is generated to a single function and is decorated with the necessary TypeScript decorators
to indicate their function.

8.1 Anatomy of a Route

For example, given the following Operation object defined in an OpenAPI specification file is for a GET request to
retrieve a single object resource of the Pet schema given a specified unique identifier.

1 /pet/{id}:
2 x-schema: Pet
3 parameters:
4 - $ref: "#/components/parameters/id"
5 get:
6 description: Returns a single Pet from the system that the user has access to
7 x-name: findById
8 responses:
9 "200":

10 description: A Pet object.
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/Pet"

The resulting route handler class and function as generated by Composer will look like the following.

1 /**
2 * Handles all REST API requests for the endpoint `/pet`.
3 *
4 * @author AcceleratXR, Inc.
5 */
6 @Model(Pet)
7 @Route("/pet")
8 class PetRoute extends ModelRoute<Pet> {
9 ...

(continues on next page)

25

ComposerJS

(continued from previous page)

10

11 /**
12 * Returns a single Pet from the system that the user has access to
13 */
14 @Get("/:id")
15 private async findById(@Param("id") id: string, @AuthUser user?: JWTUser):␣

→˓Promise<Pet | undefined> {
16 return super.doFindById(id, user);
17 }
18

19 ...
20 }

First notice how the class itself is constructed. The Path Item in the OpenAPI specification specifies an x-schema field
with value Pet. This means that all Path Items that also specify Pet will be grouped into the same PetRoute.ts file.

The @Model(Pet) decorator is used to identify that this Route handler class is associated with the Pet data model.
When the Composer server starts up and scans this class it therefore uses this information to bind the correct datastore
connection.

The class also uses the @Route decorator. This indicates to the Server that the class is responsible for processing
RESTful endpoints. The decorator can take either a single string value or an array as its sole parameter corresponding
to the root path patterns that the handler will respond to. In this example, this route handler is responsible for processing
all incoming requests to the /pet path.

Finally we get to the endpoint handler itself, findById. The name findById directly corresponds to the x-name
value specified in the Operation object’s definition. Further, the HTTP method is denoted by the @Get decorator and
take an optional argument /:id. This path gets appended to the root defined at the top of the class /pet/:id when
the class is processed by the Server and registered with ExpressJS. Each function defined with a corresponding HTTP
method decorator is registered to ExpressJS accordingly as a middleware function. Should the handler also make use of
the @Before and @After decorators, these additional functions will be registered respectively with the route handler
function as additional middleware for the given endpoint path.

The function itself takes multiple arguments, namely @Param("id") id: string, @AuthUser user?:
JWTUser. The First argument with the @Param decorator indicates that the path contains one or more parameters,
one of which is named id and that the server should pull that value out of the request path and pass its value in directly
to this argument. Therefore, if the HTTP request that arrives is for the path /pet/scotty then the value of the id
argument will be scotty.

The second argument is for the authorized user that performed the request as denoted by the @AuthUser decorator. As
this is an optional argument, a value is only passed in when a user has actually authenticated with the service and is
valid. In all other cases this value will be undefined to indicate that no valid user is attempting to perform this action.

The final thing to notice about this function is the body and return type. The return type is of type Promise<Pet |
undefined>. This indicates to the server that the handler is async and will return a Pet object if the object was found
with the given id or undefined object if it could not be at some point in the future. The return of the function does not
have to be a Promise and in fact can be a direct value. The server will automatically adjust its behavior accordingly.
When one of these values is returned, the server will automatically encode the object as JSON and return it to the client.

The body of the function makes a single call to super.doFindById(id, user). Notice that the class’s definition
inherits from ModelRoute. This is a base class to which all Model route handlers can extend to provide common
built-in behavior such as this. It’s purpose is to reduce the amount of code needed for common data oriented REST
APIs. In this particular case we are leveraging the built-in function doFindById. This function performs generic logic
for retrieving a single record of the desired type from the datastore. The built-in will also handle validating permissions
for accessing the object for the authorized user when Access Control Lists are enabled.

26 Chapter 8. Route Handlers

ComposerJS

8.2 Route Decorators

The following is a list of decorators that can used within a Route handler class to perform various HTTP processing
behavior.

8.2.1 @Route

The @Route decorator is used to indicate that a given class contains one or more endpoint handlers for a given set of
paths.

1 /**
2 * Handles all REST API requests for the endpoint `/pet`.
3 *
4 * @author <AUTHOR>
5 */
6 @Model(Pet)
7 @Route("/pet")
8 class PetRoute extends ModelRoute<Pet> {
9 }

8.2.2 @Init

The @Init decorator indicates a function within a Route handler class that should be called at service startup in order
to initialize some state.

1 /**
2 * Called on server startup to initialize the route with any defaults.
3 */
4 @Init
5 private async initialize() {
6 // TODO Add business logic here
7 }

8.2.3 @Auth

The @Auth decorator is used to indicate that the decorated endpoint handle requires authentication by one of the spec-
ified methods.

1 /**
2 * Add a new pet to the store
3 */
4 @Auth(["jwt"])
5 @Post()
6 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
7 const newObj: Pet = new Pet(obj);
8

9 throw new Error("This route is not implemented.");
10 }

8.2. Route Decorators 27

ComposerJS

8.2.4 @Before

This decorator is used to indicate additional middleware functions that should be executed before the main endpoint
handler is executed. This is typically used for input pre-processing and validation.

1 /**
2 * Add a new pet to the store
3 */
4 @Auth(["jwt"])
5 @Before(["validate"])
6 @After(["prepareOutput"])
7 @Post()
8 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
9 const newObj: Pet = new Pet(obj);

10

11 throw new Error("This route is not implemented.");
12 }

8.2.5 @After

The @After decorator is used to indicate additional middleware functions that should be expected after the main
endpoint handler is executed. This is typically used for post-processing and data preparation before returning to the
client.

1 /**
2 * Add a new pet to the store
3 */
4 @Auth(["jwt"])
5 @Before(["validate"])
6 @After(["prepareOutput"])
7 @Post()
8 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
9 const newObj: Pet = new Pet(obj);

10

11 throw new Error("This route is not implemented.");
12 }

8.2.6 @Delete

The @Delete decorator is used to indicate that the handler function will process HTTP requests with method DELETE.
It takes an optional parameter to provide a sub-path.

1 /**
2 * Deletes the Pet
3 */
4 @Auth(["jwt"])
5 @Delete("/:id")
6 private async delete(@Param("id") id: string, @AuthUser user?: JWTUser): Promise<void> {
7 return super.doDelete(id, user);
8 }

28 Chapter 8. Route Handlers

ComposerJS

8.2.7 @Get

The @Get decorator is used to indicate that the handler function will process HTTP requests with method GET. It takes
an optional parameter to provide a sub-path.

1 /**
2 * Multiple Pet objects
3 */
4 @Get()
5 private async find(@AuthUser user?: JWTUser): Promise<Array<Pet>> {
6 throw new Error("This route is not implemented.");
7 }

8.2.8 @Post

The @Post decorator is used to indicate that the handler function will process HTTP requests with method POST. It
takes an optional parameter to provide a sub-path.

1 /**
2 * Add a new pet to the store
3 */
4 @Auth(["jwt"])
5 @Post()
6 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
7 const newObj: Pet = new Pet(obj);
8

9 throw new Error("This route is not implemented.");
10 }

8.2.9 @Put

The @Put decorator is used to indicate that the handler function will process HTTP requests with method PUT. It takes
an optional parameter to provide a sub-path.

1 /**
2 * Updates a single Pet
3 */
4 @Auth(["jwt"])
5 @Put("/:id")
6 @Validate("validate")
7 private async update(@Param("id") id: string, obj: Pet, @AuthUser user?: JWTUser):␣

→˓Promise<Pet> {
8 const newObj: Pet = new Pet(obj);
9

10 return super.doUpdate(id, newObj, user);
11 }

8.2. Route Decorators 29

ComposerJS

8.2.10 @Validate

This decorator is used to indicate a middleware function that will execute before the main endpoint handler in order to
validate the incoming data. It must be the name of a function within the class itself.

1 /**
2 * Determines if the specified request payload is valid and can be accepted.
3 *
4 * @throws When the request payload contains invalid input or data.
5 */
6 private validate(data: Pet): void {
7 // TODO Validate input data
8 }
9

10 /**
11 * Updates a single Pet
12 */
13 @Auth(["jwt"])
14 @Put("/:id")
15 @Validate("validate")
16 private async update(@Param("id") id: string, obj: Pet, @AuthUser user?: JWTUser):␣

→˓Promise<Pet> {
17 const newObj: Pet = new Pet(obj);
18

19 return super.doUpdate(id, newObj, user);
20 }

8.2.11 @WebSocket

The @WebSocket decorator is used to indicate that the handler function will process HTTP Upgrade requests in order
to establish a WebSocket connection with the client. It takes an optional parameter to provide a sub-path.

1 /**
2 * Create a WebSocket connection with the client.
3 */
4 @WebSocket()
5 private async connect(@Socket ws: ws, @AuthUser user?: JWTUser): Promise<Array<Pet>> {
6 ws.on("message", (msg) => {
7 ws.send(`echo ${msg}`);
8 });
9 ws.send(`hello ${user ? user.uid : "guest"}`);

10 }

30 Chapter 8. Route Handlers

CHAPTER

NINE

BUILT-INS

Built-ins are a way of providing default behavior for common operations in a RESTful API. In the case of Composer,
there exists one primary set of built-in functions for working with data models and is provided by the ModelRoute
abstract base class.

9.1 ModelRoute

The ModelRoute base class provides a set of route handler built-ins for common operations when designing data
oriented RESTful API services. These built-ins can be called from any route handler function to provide the desired
behavior during request processing.

These built-ins are designed around standard CRUD operations and include the following.

• doCount - Searches a collection of objects and returns the count of matches

• doCreate - Create a new object

• doDelete - Delete an existing object

• doFindAll - Search and retrieve a collection of objects

• doFindById - Retrieve an existing single object

• doTruncate - Delete all objects from a collection

• doUpdate - Update an existing object

9.1.1 doCount

doCount(params: any, query: any, user?: any): Promise<Count>

This built-in provides a way to perform a search on a collection of objects and return only the total count of those
matching the given criteria. It takes both the request params as provided by the @Param decorator and the path query
parameters as provided by the @Query decorator. When ACLs are enabled this built-in will also verify that the autho-
rized user has READ permission on the associated type ACL.

31

ComposerJS

9.1.2 doCreate

doCreate(obj: T, user?: any, acl?: AccessControlList): Promise<T>

This built-in is used to create a single new object and store it in the database. Once stored in the database, the resulting
object as it was stored is returned to be delivered back to the client. When ACLs are enabled this built-in will also verify
that the authorized user has CREATE permission on the associated type ACL. The built-in will also create an ACL for
the object, inheriting the permissions of the type ACL and giving full control to the authorized user performing the
create. You may optionally provide your own ACL for the object to be created which overrides this default behavior.

9.1.3 doDelete

doDelete(id: string, user?: any): Promise<void>

The doDelete built-in is for deleting a single object in a collection. It takes a single id parameter which is the unique
identifier of the object in question. The id can be any value from an data model class that has the @Identifier
decorator. This is very useful when data models have multiple possible identifiers such as a uid or a unique name.
When ACLs are enabled this built-in will also verify that the authorized user has DELETE permission on the associated
object’s ACL.

9.1.4 doFindAll

doFindAll(params: any, query: any, user?: any): Promise<T[]>

The doFindAll built-in searches collection of objects for a given set of criteria as specified by the params and query
arguments. Both params and query arguments must be a map of key=value pairs where the key corresponds to a
property within the data model and the value is the desired value to find in the collection. When ACLs are enabled this
built-in will also verify that the authorized user has READ permission on the associated type ACL.

9.1.5 doFindById

doFindById(id: string, user?: any): Promise<T | undefined>

This built-in retrieves a single existing object from a collection with a specified unique id. The id can be any value
from an data model class that has the @Identifier decorator. This is very useful when data models have multiple
possible identifiers such as a uid or a unique name. When ACLs are enabled this built-in will also verify that the
authorized user has READ permission on the associated object’s ACL.

9.1.6 doTruncate

doTruncate(user?: any): Promise<void>

This built-in is used to delete all objects of a single collection. It is equivalent to a DROP operation on a table. When
ACLs are enabled this built-in will also verify that the authorized user has DELETE permission on the associated type
ACL.

32 Chapter 9. Built-Ins

ComposerJS

9.1.7 doUpdate

doUpdate(id: string, obj: T, user?: any): Promise<T>

The doUpdate built-in will modify an existing record in the datastore for the object with the specified id. The id can be
any value from an data model class that has the @Identifier decorator. The obj argument is the contents of the new
object to persist. It must be the entire object and not a partial. The system leverages an optimistic locking mechanism
to ensure that only objects with a like version can be updated. Thus, if the version of the specified object does
not match the value of the existing object in the datastore, a 409 CONFLICT error is thrown and returned to the client.
When ACLs are enabled this built-in will also verify that the authorized user has UPDATE permission on the associated
object’s ACL.

9.1. ModelRoute 33

ComposerJS

34 Chapter 9. Built-Ins

CHAPTER

TEN

DEFAULT ROUTES

Composer server projects come with a selection of default routes that are provided out-of-the-box. These include:

• Access Control Lists

• Default Index

• OpenAPI documentation (HTML / json)

• Prometheus metrics

10.1 Access Control Lists

When ACLs are enabled (via config.ts) the server automatically registers the /acls route handler. This route handler
responds to the standard built-in operations for the endpoints for all requests sent to the /acls path as follows.

• GET /acls - Searches all ACLs

• POST /acls - Creates a new ACL

• DELETE /acls - Deletes all ACLs

• GET /acls/count - Searches all ACLs and return the count

• GET /acls/:id - Returns a single existing ACL

• PUT /acls/:id - Updates a single existing ACL

• DELETE /acls/:id - Deletes a single existing ACL

When the server starts up, the system automatically scans all route handler classes that inherit from ModelRoute and
retrieve their defaultACL. This default ACL is associated with all collection oriented requests for a given data model
(e.g. create, findAll, truncate) where the uid of the ACL is the name of the data model class.

Individual record ACL objects are associated with their actual objects by using the uid value for both the object and
the ACL itself. These objects will then specify the type ACL as it’s parent, in order to inherit default behavior from the
class.

35

ComposerJS

10.2 Default Index

The default index route handler binds to the / endpoint and handles all GET requests. It is a simple handler that returns
basic information about the service such as its name, version and server time. The resulting output looks like this.

{"name":"petstore","time":"2020-05-29T21:09:36.123Z","version":"1.0.0"}

10.3 OpenAPI Documentation

The OpenAPI default route provides access to the server’s OpenAPI specification in both HTML and json form.

• GET /api-docs - Returns the server’s OpenAPI specification in HTML format

• GET /openapi.json - Returns the server’s OpenAPI specification in JSON format

10.4 Prometheus Metrics

The Composer server comes with built-in support for Prometheus metrics and is exposed via the /metrics endpoint.

• GET /metrics - Returns all Prometheus metrics for the server

• GET /metrics/:name - Returns the Prometheus metric with the given name

36 Chapter 10. Default Routes

CHAPTER

ELEVEN

DEBUGGING

While it is perfectly possible to run the command yarn start to get the server going, this also requires that you’ve
got a database up and running locally as well. This is obviously not ideal so Composer comes pre-packaged with
configuration for Docker. With Docker you can run the service in a container, including all required databases from
the command prompt.

11.1 Docker Compose

1 docker-compose build
2 docker-compose run

11.2 Debugging in Visual Studio Code

Composer also is designed for work with Visual Studio Code out of the box. If you are using VS Code all you need to
do is hit F5 once your docker container is up and running. It will automatically connect to your instance and allow for
debugging of the service directly.

Composer is a simple, light-weight and opinionated framework for rapidly developing scalable REST API services for
NodeJS, written in TypeScript.

The framework combines the OpenAPI specification with a simple functional programming model to provide a highly
expressive and powerful system for developing REST API services.

37

ComposerJS

38 Chapter 11. Debugging

CHAPTER

TWELVE

FEATURES

• Built on OpenAPI

• HTTP 1.x/2.x Web Server

• WebSocket Support

• Global Configuration

• Dependency Injection

• Built-in behaviors for common REST API actions

• Built-in ORM layer

• Document Version Tracking

• MongoDB support

• Redis support

• 2nd Level Caching

• Authentication

• Role Based Access Control

• Prometheseus metrics

39

ComposerJS

40 Chapter 12. Features

CHAPTER

THIRTEEN

GETTING STARTED

Using Composer is as simple as 1-2-3.

13.1 Step 1

Define the REST API service using OpenAPI and save it as service.yaml.

Click here for an example.

41

openapi.html
https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml

ComposerJS

13.2 Step 2

Generate the project using the Composer CLI.

1 yarn global add @composer-js/cli
2 composer -i ./service.yaml -o . -t server -l nodejs

13.3 Step 3

Start the server!

1 yarn install
2 yarn start

42 Chapter 13. Getting Started

	About Composer
	Features
	Installation
	OpenAPI Extensions
	Datastore Objects
	Datastore Object
	Schema Object
	x-baseClass
	x-datastore
	x-ignore

	Schema Properties
	x-identifier
	x-unique

	Path Item Object
	x-name
	x-schema

	Operation Object
	x-after
	x-before
	x-name

	Authentication
	JWT Payload
	Server Authentication
	Authorization Header
	Cookie Header
	Query Parameter

	Creating a Server
	Building the Server
	Running the Server

	Project Structure
	src/jobs
	src/models
	src/routes
	src/config.ts
	src/server.ts
	test

	Route Handlers
	Anatomy of a Route
	Route Decorators
	@Route
	@Init
	@Auth
	@Before
	@After
	@Delete
	@Get
	@Post
	@Put
	@Validate
	@WebSocket

	Built-Ins
	ModelRoute
	doCount
	doCreate
	doDelete
	doFindAll
	doFindById
	doTruncate
	doUpdate

	Default Routes
	Access Control Lists
	Default Index
	OpenAPI Documentation
	Prometheus Metrics

	Debugging
	Docker Compose
	Debugging in Visual Studio Code

	Features
	Getting Started
	Step 1
	Step 2
	Step 3

