

Composer.js

[image: _images/pipeline.svg][image: _images/coverage.svg]

Composer is a simple, light-weight and opinionated framework for rapidly developing scalable REST API services for NodeJS, written in TypeScript.

The framework combines the OpenAPI specification with a simple functional programming model to provide a highly expressive and powerful system for developing REST API services.

Features

	Built on OpenAPI

	HTTP 1.x/2.x Web Server

	WebSocket Support

	Global Configuration

	Dependency Injection

	Built-in behaviors for common REST API actions

	Built-in ORM layer

	Document Version Tracking

	MongoDB support

	Redis support

	2nd Level Caching

	Authentication

	Role Based Access Control

	Prometheseus metrics

Getting Started

Using Composer is as simple as 1-2-3.

Step 1

Define the REST API service using OpenAPI and save it as service.yaml.

Click here for an example [https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml].

[image: _images/petstore_example.png]

Step 2

Generate the project using the Composer CLI.

1yarn global add @composer-js/cli
2composer -i ./service.yaml -o . -t server -l nodejs

Step 3

Start the server!

1yarn install
2yarn start

About Composer

The roots of the Composer.js project date back to 2018 when Jean-Philippe Steinmetz began work on a new MMO gaming
platform called AcceleratXR [https://goaxr.com]. It was decided early on that this project would have to take
a micro-service approach in order to reach levels of scalability and throughput required. Each system or feature
supported by the platform needed to be built quickly, reusing as much code as possible, while providing a high level
of consistency and reliability. It was then that Jean-Philippe decided a code generator tool was the best way to
go.

Upon first discovering OpenAPI Jean-Philippe was very excited, especially at the prospect of pre-made code generation
tools provided by the community. However, these tools quickly proved inadequate to build the complex and mature
platform he was making. So he began to tinker on his own. The first version of Composer (then called axr-generator)
was crude. The tool would copy a complete working service project from a basic template including all service classes
and utilities. This meant that every micro-service project had the same duplicated code. While this was great for
productivity it quickly became an enormous burden for code maintainability. If a bug was found in the core code,
each project had to be re-generated or merged. This was not a sustainable path for development.

Upon making a transition to TypeScript the tools had begun to evolve and take shape. All common functionality were now
placed in libraries that could be added as dependencies and updated with ease. All of the core functionality was
abstracted away from the service itself and leveraged runtime file scanning and decorators to parse the desired
behavior. The code generator tool was modified to only create the minimum files necessary for a given project;
the models and route handlers.

As more and more features were added to the framework it became apparent that the project was becomming unique and
special. So Jean-Philippe and the rest of the AcceleratXR team decided to rename the system to Composer.js and release
it to the community so that everyone can build professional RESTful API services faster, with more consistency and with
enterprise features.

Features

Composer comes with a powerful feature set out of the box and is easily extended to provide additional capability.

	Built on OpenAPI

	HTTP 1.x/2.x Web Server

	WebSocket Support

	Global Configuration

	Dependency Injection

	Built-in behaviors for common REST API actions

	Built-in ORM layer

	Document Version Tracking

	MongoDB support

	Redis support

	2nd Level Caching

	Authentication

	Role Based Access Control

	Prometheseus metrics

Installation

Installing Composer is very easy. From any terminal or command line simply run the following command.

1yarn global add @composer-js/cli

Once complete can now run composer.

1composer --help

OpenAPI Extensions

Every Composer project starts with an OpenAPI [https://swagger.io/specification/] specification file. OpenAPI is a standard, language-agnostic,
document format for describing RESTful APIs. It is from this document that both server and client code can be easily
generated using the CLI tool. This enables developers to save time on initial project creation as well as providing
consistent and well-documented APIs for others to use long after the project is deployed.

The OpenAPI specification is somewhat limited, however, and avoids describing certain details about the implementation
of a RESTful API. Details that a code generator and framework like Composer must have in order to do its job properly.
Therefore, we have extended the specification to add several new features.

Click here for an example [https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml].

Datastore Objects

Holds a set of datastore connection configurations. All objects defined within the x-datastores object are copied
to the service’s config.ts file. Schema objects desiring to be bound to a given Datastore Object must explicitly
reference it using the x-datastore field.

Example

1 components:
2 x-datastores:
3 mongodb:
4 type: mongodb
5 url: mongodb://localhost

Datastore Object

Holds the name and associated configuration for a particular datastore connection. All properties defined in the object
are copied to the service’s config.ts file. Configuration options should conform to the
TypeORM Connection Options [https://typeorm.io/#/connection-options]. Desired Schema objects that are to be bound
to a given Datastore object must be explicitly referenced with the x-datastore field where the value matches
the name of the object.

Example

1 components:
2 x-datastores:
3 mongodb:
4 type: mongodb
5 url: mongodb://localhost

Schema Object

The following extensions apply to Schema [https://swagger.io/specification/#schema-object] definitions.

x-baseClass

Default Value: null

The x-baseClass field is applied to a Schema [https://swagger.io/specification/#schema-object]
to identify the base class behavior that the generated Schema class will inherit. There are three possible values
presently supported by Composer.

Possible Values:

	BaseMongoEntity - Provides base behavior for all Schema classes that will be stored in a collection of a MongoDB database.

	BaseSQLEntity - Provides base behavior for all Schema classes that will be stored in a SQL database.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb

x-datastore

Default Value: null

The x-datastore field is applied to a Schema [https://swagger.io/specification/#schema-object] to identify
which database connection the schema will be bound to. The name of the database connection must match a defined
Datastore Object.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-baseClass: BaseMongoEntity
6 x-datastore: mongodb

x-ignore

Default Value: false

The x-ignore field is applied to a Schema [https://swagger.io/specification/#schema-object] Property to
indicate that it should be ignored from code generation.

Example

1 components:
2 schemas:
3 Order:
4 type: "object"
5 x-ignore: true

Schema Properties

The following extensions have been added to Schema Object [https://swagger.io/specification/#schema-object]
Property definitions.

x-identifier

Default Value: false

The x-identifier field is applied to a Schema [https://swagger.io/specification/#schema-object] Property to
indicate that the field is a unique identifier within the database and should be indexed and must be unique.

Example

 1 components:
 2 schemas:
 3 Order:
 4 type: "object"
 5 x-baseClass: BaseMongoEntity
 6 x-datastore: mongodb
 7 properties:
 8 name:
 9 type: "string"
10 x-identifier: true
11 x-unique: true
12 nullable: false

x-unique

Default Value: false

The x-unique field is applied to a Schema [https://swagger.io/specification/#schema-object] Property to
indicate that the field is a unique identifier within the database and must be unique.

Example

 1 components:
 2 schemas:
 3 Order:
 4 type: "object"
 5 x-baseClass: BaseMongoEntity
 6 x-datastore: mongodb
 7 properties:
 8 name:
 9 type: "string"
10 x-identifier: true
11 x-unique: true
12 nullable: false

Path Item Object

The following extensions apply to Path Item Object [https://swagger.io/specification/#path-item-object] definitions.

x-name

Default Value: null

The x-name field is applied to a Path Item Object [https://swagger.io/specification/#path-item-object]. It
defines the unique name of the path item and the name of the generated code route handler class. This field is
superseded by the x-schema field.

Example

 1 paths:
 2 /user/login:
 3 x-name: Auth
 4 get:
 5 description: Authenticates the user using HTTP Basic and returns a JSON Web Token access token to be used with future API requests.
 6 x-name: login
 7 responses:
 8 "200":
 9 description: The JSON Web Token to be used for all future requests.
10 content:
11 application/json:
12 schema:
13 $ref: "#/components/schemas/authToken"

Generated Code

 1/**
 2 * Handles all REST API requests for the endpoint `/user/login`.
 3 *
 4 * @author <AUTHOR>
 5 */
 6@Route("/user/login")
 7class AuthRoute {
 8 @Config
 9 protected config: any;
10 @Logger
11 protected logger: any;
12
13 /**
14 * Initializes a new instance with the specified defaults.
15 */
16 constructor() {
17 }
18 ...
19}

x-schema

Default Value: null

The x-schema field is applied to a Path Item Object [https://swagger.io/specification/#path-item-object]. It
defines the Schema that the path item is bound to. This supersedes the x-name field.

Example

 1 paths:
 2 /pet:
 3 x-schema: Pet
 4 get:
 5 description: "Multiple Pet objects"
 6 x-name: "find"
 7 responses:
 8 "200":
 9 description: A list of Pet objects.
10 content:
11 application/json:
12 schema:
13 type: "array"
14 items:
15 $ref: "#/components/schemas/Pet"

Generated Code

 1/**
 2 * Handles all REST API requests for the endpoint `/pet`.
 3 *
 4 * @author <AUTHOR>
 5 */
 6@Model(Pet)
 7@Route("/pet")
 8class PetRoute extends ModelRoute<Pet> {
 9 @Config
10 protected config: any;
11 @Logger
12 protected logger: any;
13
14 @MongoRepository(Pet)
15 protected repo?: Repo<Pet>;
16
17 /**
18 * Initializes a new instance with the specified defaults.
19 */
20 constructor() {
21 super();
22 }
23 ...
24}

Operation Object

The following extensions apply to Operation Object [https://swagger.io/specification/#path-item-object] definitions.

x-after

Default Value: []

The x-after field is applied to a Operation Object [https://swagger.io/specification/#path-item-object] when it is
desirable to execute one or more middleware functions after the primary endpoint handler has finished. The value
is an array of strings, each being the name of the function to execute.

Example

 1 /user:
 2 x-schema: User
 3 post:
 4 description: Create a new User.
 5 x-name: create
 6 x-before:
 7 - validate
 8 x-after:
 9 - prepareOutput
10 requestBody:
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/User"
15 responses:
16 "201":
17 description: The newly created User.
18 content:
19 application/json:
20 schema:
21 $ref: "#/components/schemas/User"

Generated Code

 1/**
 2 * Create a new User.
 3 */
 4@Auth(["jwt"])
 5@Before(["validate"])
 6@After(["prepareOutput"])
 7@Post()
 8private async create(obj: User, @AuthUser user?: JWTUser): Promise<User> {
 9 const newObj: User = new User(obj);
10
11 throw new Error("This route is not implemented.");
12}

x-before

Default Value: []

The x-before field is applied to a Operation Object [https://swagger.io/specification/#path-item-object] when it is
desirable to execute one or more middleware functions before the primary endpoint handler has finished. The value
is an array of strings, each being the name of the function to execute.

Example

 1 /user:
 2 x-schema: User
 3 post:
 4 description: Create a new User.
 5 x-name: create
 6 x-before:
 7 - validate
 8 x-after:
 9 - prepareOutput
10 requestBody:
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/User"
15 responses:
16 "201":
17 description: The newly created User.
18 content:
19 application/json:
20 schema:
21 $ref: "#/components/schemas/User"

Generated Code

 1/**
 2 * Create a new User.
 3 */
 4@Auth(["jwt"])
 5@Before(["validate"])
 6@After(["prepareOutput"])
 7@Post()
 8private async create(obj: User, @AuthUser user?: JWTUser): Promise<User> {
 9 const newObj: User = new User(obj);
10
11 throw new Error("This route is not implemented.");
12}

x-name

Default Value: null

The x-name field is applied to a Operation Object [https://swagger.io/specification/#path-item-object]. It
defines the unique name of the operation and the function name of the generated code for the endpoint handler.

Example

 1 paths:
 2 /pet:
 3 x-schema: Pet
 4 get:
 5 description: "Multiple Pet objects"
 6 x-name: "find"
 7 responses:
 8 "200":
 9 description: A list of Pet objects.
10 content:
11 application/json:
12 schema:
13 type: "array"
14 items:
15 $ref: "#/components/schemas/Pet"

Generated Code

1/**
2 * Multiple Pet objects
3 */
4@Get()
5private async find(@AuthUser user?: JWTUser): Promise<Array<Pet>> {
6 throw new Error("This route is not implemented.");
7}

Authentication

All Composer projects leverage JSON Web Tokens (JWT) as the primary mechanism for user authentication due to its speed,
flexibility and security robustness. As Composer is first and foremost a framework that was designed for building
highly scalable, distributed, micro-services and platforms the distributed nature of JWT makes it an easy choice as
it eliminates any cross-talk to a central authentication server to validate incoming requests from a user.

JWT Payload

In order for this to work correctly, all JWT tokens must be formatted in a particular way in order for Composer
services to be able to decode them properly. As such the token’s payload must contain a profile property
which contains at least a uid to uniquely identify the user as well as an optional list of roles which
will determine the available permissions the user has to perform actions within the service.

{
 "profile": {
 "uid": "3b61f36b-8254-4a7a-ae36-33459692127d",
 "roles": []
 }
}

Different services may choose to require additional properties within the profile but these are the ones
Composer uses internally to perform all of its work.

Optionally, a token’s profile payload may be encrypted to provide an additional level of security.

Server Authentication

By default, all Composer services come with a built-in authentication handler for JWT authentication tokens.
Tokens may be passed to the service by one of three methods; the Authorization header, the cookie header,
or the jwt_token query parameter.

Authorization Header

A Composer service will automatically decode a JWT token and attempt to validate it when an Authorization header
is included with a request containing either the Bearer or jwt type indicator.

Example

GET /path HTTP/1.1
Host: composerjs.io
Authorization: Bearer 0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

GET /path HTTP/1.1
Host: composerjs.io
Authorization: jwt 0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

Cookie Header

Composer also recognizes cookies with the name jwt that are passed in to the HTTP request.

Example

GET /path HTTP/1.1
Host: composerjs.io
Cookie: jwt=0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0

Query Parameter

Sometimes it is not possible to pass the authentication token via a header. This is common in debugging scenarios or on
platforms that don’t allow custom headers for HTTP clients. In such a case you can also pass in the token using the
special jwt_token query parameter.

Example

GET /path?jwt_token=0938r2098n209rq38v90bb87209830928r0q3809r8302vqr803q28r0982q0 HTTP/1.1
Host: composerjs.io

Creating a Server

The first thing to do is a create the OpenAPI specification file needed to describe the Composer server.

Click here for an example [https://gitlab.com/AcceleratXR/composerjs/cli/-/raw/master/test/petstore.yaml].

Once your spec file is complete, simply run it through the Composer CLI tool, specifying nodejs as the language
and server as the type.

1composer -i ./service.yaml -o . -t server -l nodejs

In the above example we defined our schema in the file service.yaml and told Composer to generate a new project
in the current directory.

Building the Server

Before you can build the server project you will need to install the project dependencies.

1yarn install

After that simply run yarn build.

1yarn build

Running the Server

All Composer projects come pre-configured to be run with Docker Compose [https://docs.docker.com/compose/].

1docker-compose build
2docker-compose run

Once the system is up and running you’ll see log output such as the following.

 1server_1 | 2020-05-30T23:35:10.725Z info: Registered Route: GET /
 2server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: POST /acls
 3server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: DELETE /acls/:id
 4server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: GET /acls
 5server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: GET /acls/:id
 6server_1 | 2020-05-30T23:35:10.726Z info: Registered Route: PUT /acls/:id
 7server_1 | 2020-05-30T23:35:10.729Z info: Registered Route: GET /metrics
 8server_1 | 2020-05-30T23:35:10.729Z info: Registered Route: GET /metrics/:metric
 9server_1 | 2020-05-30T23:35:10.729Z info: Scanning for routes...
10server_1 | 2020-05-30T23:35:10.741Z info: Registered Route: GET /user/login
11server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: GET /user/login/user/logout
12server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: GET /store/order
13server_1 | 2020-05-30T23:35:10.742Z info: Registered Route: POST /store/order
14server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: GET /store/order/:id
15server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: PUT /store/order/:id
16server_1 | 2020-05-30T23:35:10.743Z info: Registered Route: DELETE /store/order/:id
17server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: GET /pet
18server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: POST /pet
19server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: DELETE /pet
20server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: GET /pet/:id
21server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: PUT /pet/:id
22server_1 | 2020-05-30T23:35:10.744Z info: Registered Route: DELETE /pet/:id
23server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: GET /user
24server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: POST /user
25server_1 | 2020-05-30T23:35:10.745Z info: Registered Route: DELETE /user
26server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: GET /user/:id
27server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: PUT /user/:id
28server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: DELETE /user/:id
29server_1 | 2020-05-30T23:35:10.746Z info: Registered Route: GET /user/count
30server_1 | 2020-05-30T23:35:10.746Z info: Initializing routes...
31server_1 | 2020-05-30T23:35:10.778Z info: Listening on port 3000...
32server_1 | 2020-05-30T23:35:10.784Z info: Starting service MetricsCollector...

Project Structure

Once you’ve generated your NodeJS server project with Composer you’ll want to familiarize yourself with its structure.

[image: ../_images/server_project_structure.PNG]
The majority of the important bits are in the src folder. So let’s focus on that first.

src/jobs

The jobs folder contains TypeScript classes that provide background services that run at a scheduled interval. Each
Composer project comes with one default background job called the MetricsCollector. The server will automatically
pick up any class within this folder and load it as a background job on startup.

src/models

At startup the server will automatically scan and load all files defined in this folder as data model definitions.
Each data model class must be decorated with Composer and TypeORM decorators as Composer uses the TypeORM system
to manage storage of all data model objects. Composer will have automatically generated all data models defined
in the OpenAPI specification as schemas, adding the desired decorators that were specified in the OpenAPI file.

Each generated model class also features a constructor that takes a single object as its sole argument. This serves
as a simple copy constructor which enforces the desired structure of the data model, throwing away any additional
undesired data that is passed to it.

src/routes

The routes folder is where most of the magic happens. Each file in this folder is automatically loaded by the server
at startup as well. Each file corresponds to one or more Path Item objects in the OpenAPI specification file. When the
x-schema field is used for a Path Item, then all corresponding path items associated with a given data model are
grouped into one class named <Schema>Route.ts. If the x-name was used then all corresponding path items that
specified the same name are grouped into a single class named <Name>Route.ts.

src/config.ts

The config.ts file is where all the global application configuration is stored. This contains everything from the
background jobs to the datastores and JWT authentication information. The server leverages the
nconf [https://www.npmjs.com/package/nconf] configuration system to make defining and accessing configuration
variables simple. The resulting config object is automatically injected into each Route class via the @Config
decorator.

src/server.ts

The server.ts file is the entry point of the server and is the first script run. It contains simple and common
functionality needed to initialize the global configuration, system logger, background service manager and the
Composer Server itself.

test

The test folder contains all unit tests for the project. Composer is pre-configured to use the
jest [https://jestjs.io/] unit test framework. Composer automatically generates unit test files for each file in the
src/routes folder. However, these tests are not complete and must be modified.

Route Handlers

Route Handlers are a collection of ExpressJS middleware functions whose job it is to process an incoming request for a
given RESTful endpoint. Collections of handlers are grouped together by a common name or schema, depending on the
OpenAPI specification defined.

Composer makes heavy use of both functional and aspect oriented programming techniques. Each Operation defined in the
OpenAPI specification is generated to a single function and is decorated with the necessary TypeScript decorators to
indicate their function.

Anatomy of a Route

For example, given the following Operation object defined in an OpenAPI specification file is for a GET request
to retrieve a single object resource of the Pet schema given a specified unique identifier.

 1 /pet/{id}:
 2 x-schema: Pet
 3 parameters:
 4 - $ref: "#/components/parameters/id"
 5 get:
 6 description: Returns a single Pet from the system that the user has access to
 7 x-name: findById
 8 responses:
 9 "200":
10 description: A Pet object.
11 content:
12 application/json:
13 schema:
14 $ref: "#/components/schemas/Pet"

The resulting route handler class and function as generated by Composer will look like the following.

 1 /**
 2 * Handles all REST API requests for the endpoint `/pet`.
 3 *
 4 * @author AcceleratXR, Inc.
 5 */
 6 @Model(Pet)
 7 @Route("/pet")
 8 class PetRoute extends ModelRoute<Pet> {
 9 ...
10
11 /**
12 * Returns a single Pet from the system that the user has access to
13 */
14 @Get("/:id")
15 private async findById(@Param("id") id: string, @AuthUser user?: JWTUser): Promise<Pet | undefined> {
16 return super.doFindById(id, user);
17 }
18
19 ...
20 }

First notice how the class itself is constructed. The Path Item in the OpenAPI specification specifies an x-schema
field with value Pet. This means that all Path Items that also specify Pet will be grouped into the same
PetRoute.ts file.

The @Model(Pet) decorator is used to identify that this Route handler class is associated with the Pet data
model. When the Composer server starts up and scans this class it therefore uses this information to bind the correct
datastore connection.

The class also uses the @Route decorator. This indicates to the Server that the class is responsible for processing
RESTful endpoints. The decorator can take either a single string value or an array as its sole parameter corresponding
to the root path patterns that the handler will respond to. In this example, this route handler is responsible for
processing all incoming requests to the /pet path.

Finally we get to the endpoint handler itself, findById. The name findById directly corresponds to the x-name
value specified in the Operation object’s definition. Further, the HTTP method is denoted by the @Get decorator and
take an optional argument /:id. This path gets appended to the root defined at the top of the class /pet/:id when
the class is processed by the Server and registered with ExpressJS. Each function defined with a corresponding HTTP method
decorator is registered to ExpressJS accordingly as a middleware function. Should the handler also make use of the
@Before and @After decorators, these additional functions will be registered respectively with the route handler
function as additional middleware for the given endpoint path.

The function itself takes multiple arguments, namely @Param("id") id: string, @AuthUser user?: JWTUser. The First
argument with the @Param decorator indicates that the path contains one or more parameters, one of which is named id
and that the server should pull that value out of the request path and pass its value in directly to this argument.
Therefore, if the HTTP request that arrives is for the path /pet/scotty then the value of the id argument will be
scotty.

The second argument is for the authorized user that performed the request as denoted by the @AuthUser decorator. As this
is an optional argument, a value is only passed in when a user has actually authenticated with the service and is valid. In
all other cases this value will be undefined to indicate that no valid user is attempting to perform this action.

The final thing to notice about this function is the body and return type. The return type is of type
Promise<Pet | undefined>. This indicates to the server that the handler is async and will return a Pet object if the
object was found with the given id or undefined object if it could not be at some point in the future. The return of the
function does not have to be a Promise and in fact can be a direct value. The server will automatically adjust its behavior
accordingly. When one of these values is returned, the server will automatically encode the object as JSON and return it to
the client.

The body of the function makes a single call to super.doFindById(id, user). Notice that the class’s definition
inherits from ModelRoute. This is a base class to which all Model route handlers can extend to provide common built-in
behavior such as this. It’s purpose is to reduce the amount of code needed for common data oriented REST APIs. In this
particular case we are leveraging the built-in function doFindById. This function performs generic logic for retrieving
a single record of the desired type from the datastore. The built-in will also handle validating permissions for accessing
the object for the authorized user when Access Control Lists are enabled.

Route Decorators

The following is a list of decorators that can used within a Route handler class to perform various HTTP processing behavior.

@Route

The @Route decorator is used to indicate that a given class contains one or more endpoint handlers for a given set
of paths.

1/**
2 * Handles all REST API requests for the endpoint `/pet`.
3 *
4 * @author <AUTHOR>
5 */
6@Model(Pet)
7@Route("/pet")
8class PetRoute extends ModelRoute<Pet> {
9}

@Init

The @Init decorator indicates a function within a Route handler class that should be called at service startup in
order to initialize some state.

1/**
2 * Called on server startup to initialize the route with any defaults.
3 */
4 @Init
5 private async initialize() {
6 // TODO Add business logic here
7 }

@Auth

The @Auth decorator is used to indicate that the decorated endpoint handle requires authentication by one of the
specified methods.

 1 /**
 2 * Add a new pet to the store
 3 */
 4 @Auth(["jwt"])
 5 @Post()
 6 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
 7 const newObj: Pet = new Pet(obj);
 8
 9 throw new Error("This route is not implemented.");
10 }

@Before

This decorator is used to indicate additional middleware functions that should be executed before the main endpoint
handler is executed. This is typically used for input pre-processing and validation.

 1 /**
 2 * Add a new pet to the store
 3 */
 4 @Auth(["jwt"])
 5 @Before(["validate"])
 6 @After(["prepareOutput"])
 7 @Post()
 8 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
 9 const newObj: Pet = new Pet(obj);
10
11 throw new Error("This route is not implemented.");
12 }

@After

The @After decorator is used to indicate additional middleware functions that should be expected after the main
endpoint handler is executed. This is typically used for post-processing and data preparation before returning to the
client.

 1 /**
 2 * Add a new pet to the store
 3 */
 4 @Auth(["jwt"])
 5 @Before(["validate"])
 6 @After(["prepareOutput"])
 7 @Post()
 8 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
 9 const newObj: Pet = new Pet(obj);
10
11 throw new Error("This route is not implemented.");
12 }

@Delete

The @Delete decorator is used to indicate that the handler function will process HTTP requests with method
DELETE. It takes an optional parameter to provide a sub-path.

1 /**
2 * Deletes the Pet
3 */
4 @Auth(["jwt"])
5 @Delete("/:id")
6 private async delete(@Param("id") id: string, @AuthUser user?: JWTUser): Promise<void> {
7 return super.doDelete(id, user);
8 }

@Get

The @Get decorator is used to indicate that the handler function will process HTTP requests with method
GET. It takes an optional parameter to provide a sub-path.

1 /**
2 * Multiple Pet objects
3 */
4 @Get()
5 private async find(@AuthUser user?: JWTUser): Promise<Array<Pet>> {
6 throw new Error("This route is not implemented.");
7 }

@Post

The @Post decorator is used to indicate that the handler function will process HTTP requests with method
POST. It takes an optional parameter to provide a sub-path.

 1 /**
 2 * Add a new pet to the store
 3 */
 4 @Auth(["jwt"])
 5 @Post()
 6 private async add(obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
 7 const newObj: Pet = new Pet(obj);
 8
 9 throw new Error("This route is not implemented.");
10 }

@Put

The @Put decorator is used to indicate that the handler function will process HTTP requests with method
PUT. It takes an optional parameter to provide a sub-path.

 1 /**
 2 * Updates a single Pet
 3 */
 4 @Auth(["jwt"])
 5 @Put("/:id")
 6 @Validate("validate")
 7 private async update(@Param("id") id: string, obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
 8 const newObj: Pet = new Pet(obj);
 9
10 return super.doUpdate(id, newObj, user);
11 }

@Validate

This decorator is used to indicate a middleware function that will execute before the main endpoint handler
in order to validate the incoming data. It must be the name of a function within the class itself.

 1/**
 2 * Determines if the specified request payload is valid and can be accepted.
 3 *
 4 * @throws When the request payload contains invalid input or data.
 5 */
 6 private validate(data: Pet): void {
 7 // TODO Validate input data
 8 }
 9
10 /**
11 * Updates a single Pet
12 */
13 @Auth(["jwt"])
14 @Put("/:id")
15 @Validate("validate")
16 private async update(@Param("id") id: string, obj: Pet, @AuthUser user?: JWTUser): Promise<Pet> {
17 const newObj: Pet = new Pet(obj);
18
19 return super.doUpdate(id, newObj, user);
20 }

@WebSocket

The @WebSocket decorator is used to indicate that the handler function will process HTTP Upgrade requests in order
to establish a WebSocket connection with the client. It takes an optional parameter to provide a sub-path.

 1 /**
 2 * Create a WebSocket connection with the client.
 3 */
 4 @WebSocket()
 5 private async connect(@Socket ws: ws, @AuthUser user?: JWTUser): Promise<Array<Pet>> {
 6 ws.on("message", (msg) => {
 7 ws.send(`echo ${msg}`);
 8 });
 9 ws.send(`hello ${user ? user.uid : "guest"}`);
10 }

Built-Ins

Built-ins are a way of providing default behavior for common operations in a RESTful API. In the case of Composer,
there exists one primary set of built-in functions for working with data models and is provided by the ModelRoute
abstract base class.

ModelRoute

The ModelRoute base class provides a set of route handler built-ins for common operations when designing
data oriented RESTful API services. These built-ins can be called from any route handler function to provide the
desired behavior during request processing.

These built-ins are designed around standard CRUD operations and include the following.

	doCount - Searches a collection of objects and returns the count of matches

	doCreate - Create a new object

	doDelete - Delete an existing object

	doFindAll - Search and retrieve a collection of objects

	doFindById - Retrieve an existing single object

	doTruncate - Delete all objects from a collection

	doUpdate - Update an existing object

doCount

doCount(params: any, query: any, user?: any): Promise<Count>

This built-in provides a way to perform a search on a collection of objects and return only the total count of those
matching the given criteria. It takes both the request params as provided by the @Param decorator and the
path query parameters as provided by the @Query decorator. When ACLs are enabled this built-in will also verify
that the authorized user has READ permission on the associated type ACL.

doCreate

doCreate(obj: T, user?: any, acl?: AccessControlList): Promise<T>

This built-in is used to create a single new object and store it in the database. Once stored in the database, the
resulting object as it was stored is returned to be delivered back to the client. When ACLs are enabled this
built-in will also verify that the authorized user has CREATE permission on the associated type ACL. The built-in
will also create an ACL for the object, inheriting the permissions of the type ACL and giving full control to the
authorized user performing the create. You may optionally provide your own ACL for the object to be created which
overrides this default behavior.

doDelete

doDelete(id: string, user?: any): Promise<void>

The doDelete built-in is for deleting a single object in a collection. It takes a single id parameter which is
the unique identifier of the object in question. The id can be any value from an data model class that has the
@Identifier decorator. This is very useful when data models have multiple possible identifiers such as a uid
or a unique name. When ACLs are enabled this built-in will also verify that the authorized user has DELETE
permission on the associated object’s ACL.

doFindAll

doFindAll(params: any, query: any, user?: any): Promise<T[]>

The doFindAll built-in searches collection of objects for a given set of criteria as specified by the params
and query arguments. Both params and query arguments must be a map of key=value pairs where the key
corresponds to a property within the data model and the value is the desired value to find in the collection. When ACLs
are enabled this built-in will also verify that the authorized user has READ permission on the associated type ACL.

doFindById

doFindById(id: string, user?: any): Promise<T | undefined>

This built-in retrieves a single existing object from a collection with a specified unique id. The id can be
any value from an data model class that has the @Identifier decorator. This is very useful when data models have
multiple possible identifiers such as a uid or a unique name. When ACLs are enabled this built-in will also
verify that the authorized user has READ permission on the associated object’s ACL.

doTruncate

doTruncate(user?: any): Promise<void>

This built-in is used to delete all objects of a single collection. It is equivalent to a DROP operation on a table.
When ACLs are enabled this built-in will also verify that the authorized user has DELETE permission on the
associated type ACL.

doUpdate

doUpdate(id: string, obj: T, user?: any): Promise<T>

The doUpdate built-in will modify an existing record in the datastore for the object with the specified id. The
id can be any value from an data model class that has the @Identifier decorator. The obj argument is the
contents of the new object to persist. It must be the entire object and not a partial. The system leverages an
optimistic locking mechanism to ensure that only objects with a like version can be updated. Thus, if the
version of the specified object does not match the value of the existing object in the datastore, a
409 CONFLICT error is thrown and returned to the client. When ACLs are enabled this built-in will also
verify that the authorized user has UPDATE permission on the associated object’s ACL.

Default Routes

Composer server projects come with a selection of default routes that are provided out-of-the-box. These include:

	Access Control Lists

	Default Index

	OpenAPI documentation (HTML / json)

	Prometheus metrics

Access Control Lists

When ACLs are enabled (via config.ts) the server automatically registers the /acls route handler. This route
handler responds to the standard built-in operations for the endpoints for all requests sent to the /acls path
as follows.

	GET /acls - Searches all ACLs

	POST /acls - Creates a new ACL

	DELETE /acls - Deletes all ACLs

	GET /acls/count - Searches all ACLs and return the count

	GET /acls/:id - Returns a single existing ACL

	PUT /acls/:id - Updates a single existing ACL

	DELETE /acls/:id - Deletes a single existing ACL

When the server starts up, the system automatically scans all route handler classes that inherit from ModelRoute
and retrieve their defaultACL. This default ACL is associated with all collection oriented requests for a given
data model (e.g. create, findAll, truncate) where the uid of the ACL is the name of the data model
class.

Individual record ACL objects are associated with their actual objects by using the uid value for both the object
and the ACL itself. These objects will then specify the type ACL as it’s parent, in order to inherit default behavior
from the class.

Default Index

The default index route handler binds to the / endpoint and handles all GET requests. It is a simple handler
that returns basic information about the service such as its name, version and server time. The resulting output
looks like this.

{"name":"petstore","time":"2020-05-29T21:09:36.123Z","version":"1.0.0"}

OpenAPI Documentation

The OpenAPI default route provides access to the server’s OpenAPI specification in both HTML and json form.

	GET /api-docs - Returns the server’s OpenAPI specification in HTML format

	GET /openapi.json - Returns the server’s OpenAPI specification in JSON format

Prometheus Metrics

The Composer server comes with built-in support for Prometheus metrics and is exposed via the /metrics endpoint.

	GET /metrics - Returns all Prometheus metrics for the server

	GET /metrics/:name - Returns the Prometheus metric with the given name

Debugging

While it is perfectly possible to run the command yarn start to get the server going, this also requires that
you’ve got a database up and running locally as well. This is obviously not ideal so Composer comes pre-packaged
with configuration for Docker. With Docker you can run the service in a container, including all required databases
from the command prompt.

Docker Compose

1docker-compose build
2docker-compose run

Debugging in Visual Studio Code

Composer also is designed for work with Visual Studio Code out of the box. If you are using VS Code all you need to do
is hit F5 once your docker container is up and running. It will automatically connect to your instance and allow
for debugging of the service directly.

Index

Release Notes

v1.13.0

	Added support for WebSockets.

	Fixing multiple bugs with route handle argument injection.

v1.12.0

	
	The @Config decorator can now specify an optional path argument that will inject the value of the configuration
	value at the provided path.

	ObjectFactory.initialize and ObjectFactory.newInstance are now async functions that return a Promise.

	Moved all route specific dependency injection code from Server to ObjectFactory.

v1.11.0

	Added @Init decorator for performing post-IoC initialization during the start of the object lifecycle.

v1.10.1

	Refactored all ACL data classes to use the new @Model decorator.

v1.10.0

Upgraded all third-party dependencies.

v1.0.0

Initial release.

API Reference (Service)

Libraries:

	@composer-js/core

	@composer-js/service-core

 @composer-js/core › Globals

@composer-js/core

Index

Classes

	ClassLoader

	FileUtils

	JWTUtils

	OASUtils

	StringUtils

	ThreadPool

	UserUtils

Interfaces

	JWTUser

	JWTUtilsConfig

	JWTUtilsPayloadKeyOptions

	JWTUtilsPayloadOptions

	JWTUtilsPayloadPasswordOptions

Variables

	YAML

	combine

	format

	logFormat

	logger

	mkdirp

	os

	printf

	readline

	timestamp

	transports

	winston

Functions

	Logger

Variables

Const YAML

• YAML: any = require(“js-yaml”)

Defined in OASUtils.ts:10

combine

• combine: any

Defined in Logger.ts:6

format

• format: any

Defined in Logger.ts:5

Const logFormat

• logFormat: any = printf((info: any) => {
return ${info.timestamp} ${info.level}: ${info.message};
})

Defined in Logger.ts:7

Const logger

• logger: any = Logger()

Defined in FileUtils.ts:11

Defined in OASUtils.ts:9

Const mkdirp

• mkdirp: Function = util.promisify(require(“mkdirp”))

Defined in FileUtils.ts:12

Const os

• os: any = require(“os”)

Defined in threads/ThreadPool.ts:5

printf

• printf: any

Defined in Logger.ts:6

Const readline

• readline: any = require(“readline”)

Defined in FileUtils.ts:13

timestamp

• timestamp: any

Defined in Logger.ts:6

transports

• transports: any

Defined in Logger.ts:5

Const winston

• winston: any = require(“winston”)

Defined in Logger.ts:4

Functions

Const Logger

▸ Logger(level: string, file: string | undefined): any

Defined in Logger.ts:17

Creates a new logger with the specified level and file name to output logs to.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
level | string | “debug” | The logging level to create the logger with. |
file | string | undefined | undefined | The name (without an extension) of the file to output logs to. |

Returns: any

 @composer-js/core › Globals › ClassLoader

Class: ClassLoader

The ClassLoader provides a container for loading and managing TypeScript and JavaScript classes from disk. Loaded
classes are referenced by name and package. The package is derived from the folder the class was loaded from
relative to the root. It is expected that each file defines their class as the only export and the name of the file
is the same as the class itself.

For example, given the class fully qualified class name com.company.MyClass would load a TypeScript or JavaScript
file from disk. In the case of a TypeScript class, the file com/company/MyClass.ts is loaded whose contents
would look like the following.

class MyClass {
 // ...
}

export default MyClass;

In the case of a JavaScript class, the file com/company/MyClass.js is loaded whose contents would look like the
following.

`use strict`;

class MyClass {
 // ...
}

modules.exports = MyClass;

author Jean-Philippe Steinmetz

Hierarchy

	ClassLoader

Index

Constructors

	constructor

Properties

	classes

	includeJavaScript

	includeTypeScript

	rootDir

Methods

	GetClass

	GetClasses

	HasClass

	Load

Constructors

constructor

+ new ClassLoader(rootDir: string, includeJavaScript: boolean, includeTypeScript: boolean): ClassLoader

Defined in ClassLoader.ts:48

Creates a new instance of ClassLoader with the specified defaults.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
rootDir | string | - | The root directory to load all classes from. |
includeJavaScript | boolean | true | Set to true to load all TypeScript classes from the given rootDir, otherwise set to false. |includeTypeScript| boolean | true | Set totrueto load all JavaScript classes from the givenrootDir, otherwise set tofalse. |

Returns: ClassLoader

Properties

Protected classes

• classes: Map‹string, any› = new Map<string, any>()

Defined in ClassLoader.ts:42

The map containnig all loaded classes.

Protected includeJavaScript

• includeJavaScript: boolean = true

Defined in ClassLoader.ts:46

Indicates if JavaScript classes should be loaded.

Protected includeTypeScript

• includeTypeScript: boolean = true

Defined in ClassLoader.ts:44

Indicates if TypeScript classes should be loaded.

Protected rootDir

• rootDir: string = “.”

Defined in ClassLoader.ts:48

The path to the root directory containing all classes on disk.

Methods

GetClass

▸ GetClass(fqn: string): any | undefined

Defined in ClassLoader.ts:71

Returns the class with the specified fully qualified name.

Parameters:

Name | Type | Description |
—— | —— | —— |
fqn | string | The fully qualified name of the class to return. |

Returns: any | undefined

The class definition for the given fully qualified name if found, otherwise undefined.

GetClasses

▸ GetClasses(): Map‹string, any›

Defined in ClassLoader.ts:78

Returns the map containing all classes that have been loaded.

Returns: Map‹string, any›

HasClass

▸ HasClass(fqn: string): any | undefined

Defined in ClassLoader.ts:88

Returns true if a class exists with the specified fully qualified name.

Parameters:

Name | Type | Description |
—— | —— | —— |
fqn | string | The fully qualified name of the class to search. |

Returns: any | undefined

true if a class definition exists for the given fully qualified name, otherwise false.

Load

▸ Load(dir: string): Promise‹void›

Defined in ClassLoader.ts:98

Loads all TypeScript classes contained in the directory specified. The folder must be a child
directory to the rootDir parameter passed in to the constructor.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
dir | string | “” | The directory, relative to rootDir, containing TypeScript classes to load. |

Returns: Promise‹void›

 @composer-js/core › Globals › FileUtils

Class: FileUtils

Utility functions for working with files.

author Jean-Philippe Steinmetz

Hierarchy

	FileUtils

Index

Methods

	copyBinaryFile

	copyDirectory

	copyFile

	writeFile

Methods

Static copyBinaryFile

▸ copyBinaryFile(srcPath: string, outPath: string, variables: any): Promise‹void›

Defined in FileUtils.ts:162

Generates a copy of the source file at the desired output destination using binary copy mode.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
srcPath | string | - | The source file to copy. |
outPath | string | - | The destination file to generate. |
variables | any | {} | The map of variable names to values to swap. Applies to outPath only. |

Returns: Promise‹void›

Static copyDirectory

▸ copyDirectory(srcPath: string, outPath: string, vars: any, excludeFilters: Array‹string›, binaryFilters: Array‹string›, force: boolean): Promise‹void›

Defined in FileUtils.ts:190

Performs a deep copy of a directory tree at the given srcPath to the specified output directory. Performs
template replacement for all variables given and skips any files in the specified filter.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
srcPath | string | - | The path to the source directory to copy files from. |
outPath | string | - | The path to the destination directory to copy files to. |
vars | any | {} | The map of template variables to perform replacement on. |
excludeFilters | Array‹string› | [] | The list of file extension filters to exclude during the copy process. |
binaryFilters | Array‹string› | [] | The list of file extension filters to copy as binary only. |
force | boolean | false | Set to true to force writing over any existing files. |

Returns: Promise‹void›

Static copyFile

▸ copyFile(srcPath: string, outPath: string, variables: any, overwrite: boolean): Promise‹void›

Defined in FileUtils.ts:126

Generates a copy of the source file at the desired output destination and performs a swap of all values of the
variables specified.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
srcPath | string | - | The source file to copy. |
outPath | string | - | The destination file to generate. |
variables | any | {} | The map of variable names to values to swap. |
overwrite | boolean | false | - |

Returns: Promise‹void›

Static writeFile

▸ writeFile(srcPath: string, outPath: string, contents: any, overwrite: boolean): Promise‹void›

Defined in FileUtils.ts:31

Attempts to write the provided contents to the file path given. If a file already exists the user is prompted to
allow the file to be overwritten or merged. In the case of a merge, srcPath is used as a baseline in order to
perform a 3-way merge.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
srcPath | string | - | The baseline template file to use during a merge. |
outPath | string | - | The destination file path to be written. |
contents | any | - | The contents of the file to write. |
overwrite | boolean | false | Set to true to overwite the file and not perform a merge. |

Returns: Promise‹void›

 @composer-js/core › Globals › JWTUtils

Class: JWTUtils

Utility class for working with Json Web Token (JWT) authentication tokens.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUtils

Index

Methods

	createToken

	decodeToken

Methods

Static createToken

▸ createToken(config: JWTUtilsConfig, user: JWTUser): string

Defined in JWTUtils.ts:148

Generates a new JWT token for the given config and user object. The user object must be a valid AcceleratXR
user.

Parameters:

Name | Type | Description |
—— | —— | —— |
config | JWTUtilsConfig | The JWT configuration to use when generating the token. |
user | JWTUser | The user to encode into the token’s payload. |

Returns: string

Static decodeToken

▸ decodeToken(config: JWTUtilsConfig, token: string): JWTUser

Defined in JWTUtils.ts:197

Decodes the given JWT authentication token using the provided configuration. If the token is not valid an
error is thrown with the reason. Returns the encoded user object payload upon success.

Parameters:

Name | Type | Description |
—— | —— | —— |
config | JWTUtilsConfig | The JWT configuration to use when validating the token. |
token | string | The JWT token to validate. |

Returns: JWTUser

The user object encoded in the token’s payload.

 @composer-js/core › Globals › OASUtils

Class: OASUtils

Hierarchy

	OASUtils

Index

Methods

	getDatastore

	getObject

	getResponse

	getResponseContent

	getSchema

	getTypeInfo

	loadSpec

Methods

Static getDatastore

▸ getDatastore(spec: any, name: string): any

Defined in OASUtils.ts:20

Gets the datastore definition with the specified name.

Parameters:

Name | Type | Description |
—— | —— | —— |
spec | any | The OpenAPI specification to search. |
name | string | The name of the datastore to retrieve. |

Returns: any

The definition for the datastore with the given name if found, otherwise undefined.

Static getObject

▸ getObject(spec: any, path: string): any

Defined in OASUtils.ts:37

Gets the specification object at the specified path.

Parameters:

Name | Type | Description |
—— | —— | —— |
spec | any | The OpenAPI specification to reference. |
path | string | The path of the object to retrieve. |

Returns: any

The object at the specified path if found, otherwise undefined.

Static getResponse

▸ getResponse(obj: any): any

Defined in OASUtils.ts:64

Returns the first available response object for a 2XX response as defined by the provided Operation schema object.

Parameters:

Name | Type | Description |
—— | —— | —— |
obj | any | The Operation schema object to search. |

Returns: any

Static getResponseContent

▸ getResponseContent(obj: any): any

Defined in OASUtils.ts:83

Returns the first available response content object for a 2XX response as defined by the provided Operation schema object.

Parameters:

Name | Type | Description |
—— | —— | —— |
obj | any | The Operation schema object to search. |

Returns: any

Static getSchema

▸ getSchema(spec: any, name: string): any

Defined in OASUtils.ts:95

Retrieves the schema definition with the given name.

Parameters:

Name | Type | Description |
—— | —— | —— |
spec | any | The OpenAPI specification object to reference. |
name | string | The name of the schema to retrieve. |

Returns: any

The schema definition with the given name.

Static getTypeInfo

▸ getTypeInfo(schemaDef: any, spec: any, convertDataType: Function): any

Defined in OASUtils.ts:118

Extracts the type information for a given schema Object definition.

Parameters:

Name | Type | Description |
—— | —— | —— |
schemaDef | any | The schema definition object to extract type information from. |
spec | any | The entire OpenAPI specification object. |
convertDataType | Function | The function that converts OpenAPI Specification types to native types. |

Returns: any

A tuple containing the type, subType and subSchemaRef information.

Static loadSpec

▸ loadSpec(file: string): Promise‹any›

Defined in OASUtils.ts:173

Attempts to load the Open API specification at the given path or URL.

Parameters:

Name | Type | Description |
—— | —— | —— |
file | string | The path or URL of the OpenAPI Specification file to load. |

Returns: Promise‹any›

A promise whose result will be the loaded OpenAPI Specification as an object.

 @composer-js/core › Globals › StringUtils

Class: StringUtils

Utility functions for working with strings.

author Jean-Philippe Steinmetz

Hierarchy

	StringUtils

Index

Methods

	findAndReplace

	getParameters

	replaceAll

	toCamelCase

	toPascalCase

Methods

Static findAndReplace

▸ findAndReplace(contents: string, variables: any): string

Defined in StringUtils.ts:46

Performs a search and replace on the provided contents with the map of variable replacements. The contents
must use Mustache formatted tokens such as {{toreplace}}.

Parameters:

Name | Type | Description |
—— | —— | —— |
contents | string | The stringt to perform the find and replace on. |
variables | any | A map of key=>value pairs to search for and replace. |

Returns: string

Static getParameters

▸ getParameters(str: string): Array‹string›

Defined in StringUtils.ts:18

Returns a list of all parameters contained within the string. A parameter is a bracket delimited substring
(e.g. /my/{key}/with/{id}).

Parameters:

Name | Type | Description |
—— | —— | —— |
str | string | The string to search for parameters. |

Returns: Array‹string›

A list of parameters contained in the provided string.

Static replaceAll

▸ replaceAll(str: string, match: string | RegExp, prefix: string): string

Defined in StringUtils.ts:81

Replaces all instances of the match regex pattern with the contents of the inner regular expression pattern for
the given string.

e.g.
var result = replaceAll(‘/my/path/{id}’, new RegExp(‘\{([^\}]+)\}’), ‘:’);
console.log(result); // -> /my/path/:id

Parameters:

Name | Type | Description |
—— | —— | —— |
str | string | The string to perform replacement on. |
match | string | RegExp | The regular expression pattern to match containing an outer and inner pattern. |
prefix | string | The prefix to prepend the replacement text with. |

Returns: string

The fully replaced contents of the string.

Static toCamelCase

▸ toCamelCase(str: string): string

Defined in StringUtils.ts:99

Converts the first character in the given string to be lowercase (e.g. myVariable).

Parameters:

Name | Type | Description |
—— | —— | —— |
str | string | The string to convert to camelCase. |

Returns: string

The string converted to camelCase.

Static toPascalCase

▸ toPascalCase(str: string): string

Defined in StringUtils.ts:109

Converts the first character in the given string to be uppercase (e.g. MyVariable).

Parameters:

Name | Type | Description |
—— | —— | —— |
str | string | The string to convert to PascalCase. |

Returns: string

The string converted to PascalCase.

 @composer-js/core › Globals › ThreadPool

Class: ThreadPool

The ThreadPool class implements a method of managing a pool of execution threads that can be used for parallel
code execution. Jobs are submitted to the pool and assigned to an available worker thread for execution.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	ThreadPool

Index

Constructors

	constructor

Properties

	callbacks

	lastThread

	maxThreads

	restartOnExit

	shutdown

	workers

Accessors

	max

	size

Methods

	createWorker

	on

	send

	sendAll

	start

	stop

Constructors

constructor

+ new ThreadPool(max: number, restartOnExit: boolean): ThreadPool

Defined in threads/ThreadPool.ts:39

Creates a new ThreadPool instance with the specified defaults.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
max | number | 0 | The maximum number of threads to create. Default is os.cpus().length. |
restartOnExit | boolean | true | Set to true to restart a worker thread on exit, otherwise set to false. Default is true. |

Returns: ThreadPool

Properties

Private callbacks

• callbacks: Map‹string, Array‹Function››

Defined in threads/ThreadPool.ts:15

The map of event types to a list of callback functions.

Private lastThread

• lastThread: number

Defined in threads/ThreadPool.ts:17

The index of the last worker that was assigned work.

Private maxThreads

• maxThreads: number

Defined in threads/ThreadPool.ts:19

The maximum number of threads allowed.

Private restartOnExit

• restartOnExit: boolean

Defined in threads/ThreadPool.ts:21

Indicates if a worker thread should automatically be restarted on exit.

Private shutdown

• shutdown: boolean

Defined in threads/ThreadPool.ts:25

Used to indicate that the pool is shutting down.

workers

• workers: Array‹Worker›

Defined in threads/ThreadPool.ts:23

The list of active worker threads.

Accessors

max

• get max(): number

Defined in threads/ThreadPool.ts:30

The maximum number of threads that can be created by the pool.

Returns: number

size

• get size(): number

Defined in threads/ThreadPool.ts:37

The number of active threads in the pool.

Returns: number

Methods

Private createWorker

▸ createWorker(idx: number, script: string, args: any): Promise‹Worker›

Defined in threads/ThreadPool.ts:59

Parameters:

Name | Type |
—— | —— |
idx | number |
script | string |
args | any |

Returns: Promise‹Worker›

on

▸ on(type: string, func: Function): void

Defined in threads/ThreadPool.ts:153

Registers a new callback function to be notified when the given event type is fired.

Parameters:

Name | Type | Description |
—— | —— | —— |
type | string | The event type to be notified of. Possible values are: error, exit and message. |
func | Function | The callback function to register. |

Returns: void

send

▸ send(msg: any): void

Defined in threads/ThreadPool.ts:166

Sends the provided message to the next available worker thread. Messages are sent in a round-robin order.

Parameters:

Name | Type |
—— | —— |
msg | any |

Returns: void

sendAll

▸ sendAll(msg: any): void

Defined in threads/ThreadPool.ts:181

Sends the provided message to all worker threads in the pool.

Parameters:

Name | Type | Description |
—— | —— | —— |
msg | any | The message to send to all workers. |

Returns: void

start

▸ start(script: string, args: any, num: number): Promise‹void›

Defined in threads/ThreadPool.ts:109

Initializes the thread pool with the initial worker threads and begins execution.

Parameters:

Name | Type | Default | Description |
—— | —— | —— | —— |
script | string | - | The script file to execute in the worker thread. |
args | any | - | The arguments to pass to the worker thread. |
num | number | this.max | The number of initial threads to create, cannot be greater than max. Default is max. |

Returns: Promise‹void›

stop

▸ stop(): Promise‹void›

Defined in threads/ThreadPool.ts:133

Stops all running thread executions.

Returns: Promise‹void›

 @composer-js/core › Globals › UserUtils

Class: UserUtils

Utilities for working with authenticated user objects. An user object is expected to have the following
properties.

	uid - Universally unique identifier for the user

	email - Unique e-mail address for the user

	roles - A list of unique names indicating the permissions of the user.

	verified - Indicates if the user’s e-mail address has been verified.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	UserUtils

Index

Methods

	hasRole

	hasRoles

Methods

Static hasRole

▸ hasRole(user: any, role: string, orgUid?: undefined | string): boolean

Defined in UserUtils.ts:24

Returns true if the given user object has a role with the specified name, otherwise returns false.

Parameters:

Name | Type | Description |
—— | —— | —— |
user | any | The user object to inspect. |
role | string | The unique name of the role to search for. |
orgUid? | undefined | string | The unique identifier of an organization whose role will be verified. |

Returns: boolean

Static hasRoles

▸ hasRoles(user: any, roles: string[], orgUid?: undefined | string): boolean

Defined in UserUtils.ts:49

Returns true if the given user object has at least one role from the specified list of names, otherwise returns false.

Parameters:

Name | Type | Description |
—— | —— | —— |
user | any | The user object to inspect. |
roles | string[] | A list of unique names of the roles to search for. |
orgUid? | undefined | string | The unique identifier of an organization whose role will be verified. |

Returns: boolean

 @composer-js/core › Globals › JWTUser

Interface: JWTUser

Describes the User object that is encoded in the payload of a JWT token.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUser

Index

Properties

	dateCreated

	dateModified

	email

	externalIds

	name

	roles

	uid

	verified

Properties

Optional dateCreated

• dateCreated? : Date

Defined in JWTUtils.ts:22

The date and time that the user was created.

Optional dateModified

• dateModified? : Date

Defined in JWTUtils.ts:27

The date and time that the user was last modified.

Optional email

• email? : undefined | string

Defined in JWTUtils.ts:37

The unique e-mail address of the user.

Optional externalIds

• externalIds? : string[]

Defined in JWTUtils.ts:47

The list of unique identifiers for each third-party platform the user is linked to.

Optional name

• name? : undefined | string

Defined in JWTUtils.ts:32

The unique name of the user.

Optional roles

• roles? : string[]

Defined in JWTUtils.ts:42

The list of roles (by name) that the user is apart of and will assume privileges for.

uid

• uid: string

Defined in JWTUtils.ts:17

The universally unique identifier of the user.

Optional verified

• verified? : undefined | false | true

Defined in JWTUtils.ts:52

Indicates if the user’s e-mail address has been verified.

 @composer-js/core › Globals › JWTUtilsConfig

Interface: JWTUtilsConfig

Describes the configuration options to be used with JWTUtils functions.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUtilsConfig

Index

Properties

	options

	password

	payload

Properties

Optional options

• options? : SignOptions | VerifyOptions

Defined in JWTUtils.ts:127

The options to use when performing JWT signing or verification.

password

• password: string

Defined in JWTUtils.ts:122

The password to use for signing and verifying JWT tokens.

Optional payload

• payload? : JWTUtilsPayloadOptions | JWTUtilsPayloadKeyOptions | JWTUtilsPayloadPasswordOptions

Defined in JWTUtils.ts:132

The options that determine how JWT token payloads will be handled.

 @composer-js/core › Globals › JWTUtilsPayloadKeyOptions

Interface: JWTUtilsPayloadKeyOptions

Describes the configuration options to be used with the JWTUtilsConfig.payload property when performing
key-based encryption.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUtilsPayloadOptions

↳ JWTUtilsPayloadKeyOptions

Index

Properties

	compress

	encrypt

	private_key

	public_key

Properties

compress

• compress: boolean

Inherited from JWTUtilsPayloadOptions.compress

Defined in JWTUtils.ts:64

Set to true to enable payload compression, otherwise set to false.

encrypt

• encrypt: boolean

Inherited from JWTUtilsPayloadOptions.encrypt

Defined in JWTUtils.ts:69

Set to true to indicate that the JWT token payload is encrypted, otherwise set to false.

private_key

• private_key: string

Defined in JWTUtils.ts:105

The private key used to encrypt JWT token payloads.

public_key

• public_key: string

Defined in JWTUtils.ts:110

The public key used to decrypt JWT token payloads.

 @composer-js/core › Globals › JWTUtilsPayloadOptions

Interface: JWTUtilsPayloadOptions

Describes the configuration options to be used with the JWTUtilsConfig.payload property.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUtilsPayloadOptions

↳ JWTUtilsPayloadPasswordOptions

↳ JWTUtilsPayloadKeyOptions

Index

Properties

	compress

	encrypt

Properties

compress

• compress: boolean

Defined in JWTUtils.ts:64

Set to true to enable payload compression, otherwise set to false.

encrypt

• encrypt: boolean

Defined in JWTUtils.ts:69

Set to true to indicate that the JWT token payload is encrypted, otherwise set to false.

 @composer-js/core › Globals › JWTUtilsPayloadPasswordOptions

Interface: JWTUtilsPayloadPasswordOptions

Describes the configuration options to be used with the JWTUtilsConfig.payload property when performing password
based encryption.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	JWTUtilsPayloadOptions

↳ JWTUtilsPayloadPasswordOptions

Index

Properties

	algorithm

	compress

	encrypt

	iv

	password

Properties

algorithm

• algorithm: string

Defined in JWTUtils.ts:82

The cryptographic cipher algorithm to use during encryption/decryption of a JWT token payload.

compress

• compress: boolean

Inherited from JWTUtilsPayloadOptions.compress

Defined in JWTUtils.ts:64

Set to true to enable payload compression, otherwise set to false.

encrypt

• encrypt: boolean

Inherited from JWTUtilsPayloadOptions.encrypt

Defined in JWTUtils.ts:69

Set to true to indicate that the JWT token payload is encrypted, otherwise set to false.

iv

• iv: Buffer

Defined in JWTUtils.ts:87

The initialization vector to use during encryption and decryption.

password

• password: string

Defined in JWTUtils.ts:92

The password to use when encrypting or decrypting JWT token payloads.

 @composer-js/service-core

Globals

@composer-js/service-core

Index

Enumerations

	ACLAction

Classes

	ACLRecordMongo

	ACLRecordSQL

	ACLRouteMongo

	ACLRouteSQL

	ACLUtils

	AccessControlListMongo

	AccessControlListSQL

	BackgroundService

	BackgroundServiceManager

	BaseEntity

	BaseMongoEntity

	ConnectionManager

	IndexRoute

	JWTStrategy

	MetricsRoute

	ModelRoute

	ModelUtils

	NotificationUtils

	ObjectFactory

	OpenAPIRoute

	Options

	RepoUtils

	RouteUtils

	RoutesScanner

	Server

	SimpleMongoEntity

Interfaces

	ACLRecord

	AccessControlList

	Entity

	RequestWS

Variables

	CACHE_BASE_KEY

	cookieParser

	cors

	express

	instance

	logger

	passport

	swagger

	uuid

Functions

	After

	Auth

	Before

	Cache

	Config

	ContentType

	Delete

	Destroy

	Get

	Head

	Header

	Identifier

	Init

	Inject

	Logger

	Method

	Model

	MongoRepository

	Param

	Post

	Put

	Query

	RedisConnection

	Repository

	Request

	RequiresRole

	Response

	Route

	Socket

	TrackChanges

	User

	Validate

	WebSocket

	addWebSocket

	marshall

Variables

CACHE_BASE_KEY

• Const CACHE_BASE_KEY: string = “db.cache.AccessControlList”

Defined in src/security/ACLUtils.ts:14

cookieParser

• Const cookieParser: any = require(“cookie-parser”)

Defined in src/Server.ts:4

cors

• Const cors: any = require(“cors”)

Defined in src/Server.ts:5

express

• Const express: any = require(“express”)

Defined in src/Server.ts:6

instance

• Const instance: ACLUtils = new ACLUtils()

Defined in src/security/ACLUtils.ts:371

logger

• Const logger: any = Logger()

Defined in src/database/ConnectionManager.ts:8

Defined in src/models/ModelUtils.ts:23

passport

• Const passport: any = require(“passport”)

Defined in src/Server.ts:8

Defined in src/express/RouteUtils.ts:8

swagger

• Const swagger: any = require(“swagger-ui-express”)

Defined in src/routes/OpenAPIRoute.ts:6

uuid

• Const uuid: any = require(“uuid”)

Defined in src/models/BaseEntity.ts:6

Defined in src/models/SimpleEntity.ts:6

Defined in src/ObjectFactory.ts:9

Functions

After

▸ After(func: Function | string | (Function | string)[]): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:12

Indicates a provided function or list of functions to execute after the decorated function and before the response
is sent to a client. Note that the function must call next() in order for this decorator to work.

Parameters:

Name | Type | Description |
—— | —— | —— |
func | Function | string | (Function | string)[] | The function or list of functions to execute after the decorated function. |

Returns: (Anonymous function)

Auth

▸ Auth(strategies: string | string[], require?: boolean): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:32

Applies PassportJS authentication to the decorated route or method for the provided strategy or list of strategies
should be attempted before processing the route.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
strategies | string | string[] | - | The PassportJS strategies that will be applied when incoming requests are processed. |
require | boolean | true | Set to true to indicate that at least one of the specified authentication strategies must pass to proceed, otherwise set to false. Default is true. |

Returns: (Anonymous function)

Before

▸ Before(func: Function | string | (Function | string)[]): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:46

Indicates a provided function or list of functions to execute before the decorated function.

Parameters:

Name | Type | Description |
—— | —— | —— |
func | Function | string | (Function | string)[] | The function or list of functions to execute before the decorated function. |

Returns: (Anonymous function)

Cache

▸ Cache(ttl?: number): (Anonymous function)

Defined in src/decorators/ModelDecorators.ts:11

Indicates that the class is cacheable with the specified TTL.

Parameters:

Name | Type | Default value |
—— | —— | —— |
ttl | number | 30 |

Returns: (Anonymous function)

Config

▸ Config(path?: undefined | string): (Anonymous function)

Defined in src/decorators/ObjectDecorators.ts:50

Apply this to a property to have a configuration variable be injected at instantiation. If no path is given, the
global configuration object is injected.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The path to the configuration variable to inject. |

Returns: (Anonymous function)

ContentType

▸ ContentType(type: string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:63

Indicates that the decorated function will return content encoded with the specified content type.

Parameters:

Name | Type | Description |
—— | —— | —— |
type | string | The content type that the function will return. |

Returns: (Anonymous function)

Delete

▸ Delete(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:76

Indicates that the decorated function handles incoming DELETE requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Destroy

▸ Destroy(target: any, propertyKey: string): void

Defined in src/decorators/ObjectDecorators.ts:9

Apply this to a class function to mark it as a destructor to be called by the ObjectFactory during cleanup.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |

Returns: void

Get

▸ Get(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:85

Indicates that the decorated function handles incoming GET requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Head

▸ Head(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:94

Indicates that the decorated function handles incoming HEAD requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Header

▸ Header(name: string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:103

Injects the value of the specified request header with the given name as the value of the decorated argument.

Parameters:

Name | Type | Description |
—— | —— | —— |
name | string | The name of the header whose value will be injected. |

Returns: (Anonymous function)

Identifier

▸ Identifier(target: any, propertyKey: string | symbol): void

Defined in src/decorators/ModelDecorators.ts:25

Apply this to a property that is considered a unique identifier.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string | symbol |

Returns: void

Init

▸ Init(target: any, propertyKey: string, descriptor: PropertyDescriptor): void

Defined in src/decorators/ObjectDecorators.ts:40

Apply this to a function to be executed once a new object instance has been created and all dependencies injected.
Note: If the decorated function returns a Promise it is not gauranteed to finish execution before the object is
returned during the instantiation process.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |
descriptor | PropertyDescriptor |

Returns: void

Inject

▸ Inject(type: any, name?: string | undefined, …args: any): (Anonymous function)

Defined in src/decorators/ObjectDecorators.ts:20

Injects an object instance to the decorated property of the given name and type using the provided arguments
if no object has been created yet.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
type | any | - | The name or type of the class instance to inject. |
name | string | undefined | “default” | The unique name of the object to inject. Set to undefined to force a new instance to be created. Default value is default. |
...args | any | - | The constructor arguments to use if the object hasn’t been created before. |

Returns: (Anonymous function)

Logger

▸ Logger(target: any, propertyKey: string | symbol): void

Defined in src/decorators/ObjectDecorators.ts:65

Apply this to a property to have the logger utility injected at instantiation.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string | symbol |

Returns: void

Method

▸ Method(method: string | string[], path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:124

Indicates that the decorated function handles incoming HTTP requests for the specified HTTP method(s) at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
method | string | string[] | - |
path? | undefined | string | The sub-path that the route handles requests for. |

Returns: (Anonymous function)

Model

▸ Model(datastore: string): (Anonymous function)

Defined in src/decorators/ModelDecorators.ts:40

Indicates that the class describes an entity that will be persisted in the datastore with the given name.

Parameters:

Name | Type | Description |
—— | —— | —— |
datastore | string | The name of the datastore to store records of the decorated class. |

Returns: (Anonymous function)

MongoRepository

▸ MongoRepository(type: any): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:216

Apply this to a property to have the TypeORM MongoRepository for the given entity type injected at instantiation.

Parameters:

Name | Type | Description |
—— | —— | —— |
type | any | The entity type whose repository will be injected. |

Returns: (Anonymous function)

Param

▸ Param(name?: string | undefined): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:180

Injects the value of the specified URI parameter with the given name as the value of the decorated argument. If no
name is specified the entire request parameter will be injected.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
name | string | undefined | undefined | The name of the URI parameter whose value will be injected. |

Returns: (Anonymous function)

Post

▸ Post(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:170

Indicates that the decorated function handles incoming POST requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Put

▸ Put(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:193

Indicates that the decorated function handles incoming PUT requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Query

▸ Query(name?: string | undefined): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:203

Injects the value of the specified query parameter with the given name as the value of the decorated argument. If
no name is specified the entire request query will be injected.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
name | string | undefined | undefined | THe name of the query parameter whose value will be injected. |

Returns: (Anonymous function)

RedisConnection

▸ RedisConnection(name: string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:250

Apply this to a property to have the Redis connection injected at instantiation.

Parameters:

Name | Type | Description |
—— | —— | —— |
name | string | The name of the database connection to inject. |

Returns: (Anonymous function)

Repository

▸ Repository(type: any): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:233

Apply this to a property to have the TypeORM Repository for the given entity type injected at instantiation.

Parameters:

Name | Type | Description |
—— | —— | —— |
type | any | The entity type whose repository will be injected. |

Returns: (Anonymous function)

Request

▸ Request(target: any, propertyKey: string, index: number): void

Defined in src/decorators/RouteDecorators.ts:265

Injects the Express request object as the value of the decorated argument.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |
index | number |

Returns: void

RequiresRole

▸ RequiresRole(roles: string | string[]): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:286

Indicates that the client must be an authenticated user with at least one of the specified role(s) to process the
request.

Parameters:

Name | Type | Description |
—— | —— | —— |
roles | string | string[] | The role(s) that an authenticated user must have to make the request. |

Returns: (Anonymous function)

Response

▸ Response(target: any, propertyKey: string, index: number): void

Defined in src/decorators/RouteDecorators.ts:274

Injects the Express response object as the value of the decorated argument.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |
index | number |

Returns: void

Route

▸ Route(paths: string | string[]): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:299

Indicates that the decorated class contains Express route definitions.

Parameters:

Name | Type |
—— | —— |
paths | string | string[] |

Returns: (Anonymous function)

Socket

▸ Socket(target: any, propertyKey: string, index: number): void

Defined in src/decorators/RouteDecorators.ts:312

Injects the underlying Socket object associated with the request as the value of the decorated argument.
When the handler function is for a WebSocket request, the returned socket will be the newly established
WebSocket connection.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |
index | number |

Returns: void

TrackChanges

▸ TrackChanges(versions?: number): (Anonymous function)

Defined in src/decorators/ModelDecorators.ts:57

Indicates that the class will track changes for each document update limited to the specified number of versions.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
versions | number | -1 | The number of versions that will be tracked for each document change. Set to -1 to store all versions. Default value is -1. |

Returns: (Anonymous function)

User

▸ User(target: any, propertyKey: string, index: number): void

Defined in src/decorators/RouteDecorators.ts:321

Injects the authenticated user object as the value of the decorated argument.

Parameters:

Name | Type |
—— | —— |
target | any |
propertyKey | string |
index | number |

Returns: void

Validate

▸ Validate(func: Function | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:332

Indicates a validation function to execute in order to verify an incoming requests payload.

Parameters:

Name | Type | Description |
—— | —— | —— |
func | Function | string | The validation function to execute that will verify the request payload. |

Returns: (Anonymous function)

WebSocket

▸ WebSocket(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:345

Indicates that the decorated function handles incoming WebSocket upgrade requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

addWebSocket

▸ addWebSocket(app: Application, wss: WebSocketServer): any

Defined in src/express/WebSocket.ts:29

Enables and registers WebSocket support to the given Expressjs application and WebSocket server.

Parameters:

Name | Type | Description |
—— | —— | —— |
app | Application | The Expressjs application to add WebSocket support to. |
wss | WebSocketServer | The WebSocketServer server that will be configured for Express. |

Returns: any

marshall

▸ marshall(req: any, res: any): any

Defined in src/behaviors/DefaultBehaviors.ts:13

Sends a 200 OK response to the client containing a JSON body back to the client. The body to encode is determined
by the result property as set on the res argument. If no result property is found then a 204 NO_CONTENT
response is sent instead.

Parameters:

Name | Type | Description |
—— | —— | —— |
req | any | The original HTTP request from the client. |
res | any | The outgoing HTTP response that will be sent to the client. |

Returns: any

 @composer-js/service-core

Globals / AccessControlListMongo

Class: AccessControlListMongo

Implementation of the AccessControlList interface for use with MongoDB databases.

Hierarchy

	BaseMongoEntity

↳ AccessControlListMongo

Implements

	AccessControlList

Index

Constructors

	constructor

Properties

	_id

	dateCreated

	dateModified

	parent

	parentUid

	records

	uid

	version

Constructors

constructor

+ new AccessControlListMongo(other?: any): AccessControlListMongo

Overrides BaseMongoEntity.constructor

Defined in src/security/AccessControlListMongo.ts:65

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: AccessControlListMongo

Properties

_id

• Optional _id: ObjectID

Inherited from BaseMongoEntity._id

Defined in src/models/BaseMongoEntity.ts:18

The internal unique identifier used by MongoDB.

dateCreated

• dateCreated: Date = new Date()

Implementation of AccessControlList.dateCreated

Inherited from BaseEntity.dateCreated

Defined in src/models/BaseEntity.ts:30

The date and time that the entity was created.

dateModified

• dateModified: Date = new Date()

Implementation of AccessControlList.dateModified

Inherited from BaseEntity.dateModified

Defined in src/models/BaseEntity.ts:36

The date and time that the entity was last modified.

parent

• Optional parent: AccessControlList

Implementation of AccessControlList.parent

Defined in src/security/AccessControlListMongo.ts:58

parentUid

• Optional parentUid: string | undefined

Implementation of AccessControlList.parentUid

Defined in src/security/AccessControlListMongo.ts:62

records

• records: ACLRecordMongo[] = []

Implementation of AccessControlList.records

Defined in src/security/AccessControlListMongo.ts:65

uid

• uid: string = uuid.v4()

Implementation of AccessControlList.uid

Inherited from BaseEntity.uid

Defined in src/models/BaseEntity.ts:24

The universally unique identifier of the entity.

version

• version: number = 0

Implementation of AccessControlList.version

Inherited from BaseEntity.version

Defined in src/models/BaseEntity.ts:42

The optimistic lock version.

 @composer-js/service-core

Globals / AccessControlListSQL

Class: AccessControlListSQL

Implementation of the AccessControlList interface for use with SQL databases.

Hierarchy

	BaseEntity

↳ AccessControlListSQL

Implements

	AccessControlList

Index

Constructors

	constructor

Properties

	dateCreated

	dateModified

	parent

	parentUid

	records

	uid

	version

Constructors

constructor

+ new AccessControlListSQL(other?: any): AccessControlListSQL

Overrides BaseEntity.constructor

Defined in src/security/AccessControlListSQL.ts:65

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: AccessControlListSQL

Properties

dateCreated

• dateCreated: Date = new Date()

Implementation of AccessControlList.dateCreated

Inherited from BaseEntity.dateCreated

Defined in src/models/BaseEntity.ts:30

The date and time that the entity was created.

dateModified

• dateModified: Date = new Date()

Implementation of AccessControlList.dateModified

Inherited from BaseEntity.dateModified

Defined in src/models/BaseEntity.ts:36

The date and time that the entity was last modified.

parent

• Optional parent: AccessControlList

Implementation of AccessControlList.parent

Defined in src/security/AccessControlListSQL.ts:58

parentUid

• Optional parentUid: string | undefined

Implementation of AccessControlList.parentUid

Defined in src/security/AccessControlListSQL.ts:62

records

• records: ACLRecordSQL[] = []

Implementation of AccessControlList.records

Defined in src/security/AccessControlListSQL.ts:65

uid

• uid: string = uuid.v4()

Implementation of AccessControlList.uid

Inherited from BaseEntity.uid

Defined in src/models/BaseEntity.ts:24

The universally unique identifier of the entity.

version

• version: number = 0

Implementation of AccessControlList.version

Inherited from BaseEntity.version

Defined in src/models/BaseEntity.ts:42

The optimistic lock version.

 @composer-js/service-core

Globals / ACLRecordMongo

Class: ACLRecordMongo

Implementation of the ACLRecord interface for use with MongoDB databases.

Hierarchy

	ACLRecordMongo

Implements

	ACLRecord

Index

Constructors

	constructor

Properties

	create

	delete

	full

	read

	special

	update

	userOrRoleId

Constructors

constructor

+ new ACLRecordMongo(other?: any): ACLRecordMongo

Defined in src/security/AccessControlListMongo.ts:34

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: ACLRecordMongo

Properties

create

• create: boolean | null

Implementation of ACLRecord.create

Defined in src/security/AccessControlListMongo.ts:19

delete

• delete: boolean | null

Implementation of ACLRecord.delete

Defined in src/security/AccessControlListMongo.ts:28

full

• full: boolean | null

Implementation of ACLRecord.full

Defined in src/security/AccessControlListMongo.ts:34

read

• read: boolean | null

Implementation of ACLRecord.read

Defined in src/security/AccessControlListMongo.ts:22

special

• special: boolean | null

Implementation of ACLRecord.special

Defined in src/security/AccessControlListMongo.ts:31

update

• update: boolean | null

Implementation of ACLRecord.update

Defined in src/security/AccessControlListMongo.ts:25

userOrRoleId

• userOrRoleId: string

Implementation of ACLRecord.userOrRoleId

Defined in src/security/AccessControlListMongo.ts:16

 @composer-js/service-core

Globals / ACLRecordSQL

Class: ACLRecordSQL

Implementation of the ACLRecord interface for use with SQL databases.

Hierarchy

	ACLRecordSQL

Implements

	ACLRecord

Index

Constructors

	constructor

Properties

	create

	delete

	full

	read

	special

	update

	userOrRoleId

Constructors

constructor

+ new ACLRecordSQL(other?: any): ACLRecordSQL

Defined in src/security/AccessControlListSQL.ts:34

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: ACLRecordSQL

Properties

create

• create: boolean | null

Implementation of ACLRecord.create

Defined in src/security/AccessControlListSQL.ts:19

delete

• delete: boolean | null

Implementation of ACLRecord.delete

Defined in src/security/AccessControlListSQL.ts:28

full

• full: boolean | null

Implementation of ACLRecord.full

Defined in src/security/AccessControlListSQL.ts:34

read

• read: boolean | null

Implementation of ACLRecord.read

Defined in src/security/AccessControlListSQL.ts:22

special

• special: boolean | null

Implementation of ACLRecord.special

Defined in src/security/AccessControlListSQL.ts:31

update

• update: boolean | null

Implementation of ACLRecord.update

Defined in src/security/AccessControlListSQL.ts:25

userOrRoleId

• userOrRoleId: string

Implementation of ACLRecord.userOrRoleId

Defined in src/security/AccessControlListSQL.ts:16

 @composer-js/service-core

Globals / ACLRouteMongo

Class: ACLRouteMongo

Hierarchy

	ModelRoute<AccessControlListMongo>

↳ ACLRouteMongo

Index

Constructors

	constructor

Properties

	cacheClient

	cacheTTL

	config

	defaultACLUid

	logger

	repo

	trackChanges

Accessors

	baseCacheKey

	modelClass

Methods

	create

	delete

	doCount

	doCreate

	doDelete

	doDeleteVersion

	doFindAll

	doFindById

	doFindByIdAndVersion

	doTruncate

	doUpdate

	findAll

	findById

	getDefaultACL

	getObj

	hashQuery

	update

Constructors

constructor

+ new ACLRouteMongo(): ACLRouteMongo

Overrides ModelRoute.constructor

Defined in src/security/ACLRouteMongo.ts:20

Returns: ACLRouteMongo

Properties

cacheClient

• Protected Optional cacheClient: Redis

Inherited from ModelRoute.cacheClient

Defined in src/routes/ModelRoute.ts:33

The redis client that will be used as a 2nd level cache for all cacheable models.

cacheTTL

• Protected Optional cacheTTL: undefined | number

Inherited from ModelRoute.cacheTTL

Defined in src/routes/ModelRoute.ts:36

The time, in milliseconds, that objects will be cached before being invalidated.

config

• Private Optional config: any

Defined in src/security/ACLRouteMongo.ts:17

defaultACLUid

• Protected defaultACLUid: string = “”

Inherited from ModelRoute.defaultACLUid

Defined in src/routes/ModelRoute.ts:39

The unique identifier of the default ACL for the model type.

logger

• Protected logger: any

Inherited from ModelRoute.logger

Defined in src/routes/ModelRoute.ts:42

repo

• Protected Optional repo: Repo<AccessControlListMongo>

Overrides ModelRoute.repo

Defined in src/security/ACLRouteMongo.ts:20

trackChanges

• Protected trackChanges: number = 0

Inherited from ModelRoute.trackChanges

Defined in src/routes/ModelRoute.ts:51

The number of previous document versions to store in the database. A negative value indicates storing all
versions, a value of 0 stores no versions.

Accessors

baseCacheKey

• Protectedget baseCacheKey(): string

Overrides ModelRoute.baseCacheKey

Defined in src/security/ACLRouteMongo.ts:29

The base key used to get or set data in the cache.

Returns: string

modelClass

• Protectedget modelClass(): any

Inherited from ModelRoute.modelClass

Defined in src/routes/ModelRoute.ts:69

The class type of the model this route is associated with.

Returns: any

Methods

create

▸ Privatecreate(obj: AccessControlListMongo, user?: JWTUser): Promise<AccessControlListMongo>

Defined in src/security/ACLRouteMongo.ts:39

Parameters:

Name | Type |
—— | —— |
obj | AccessControlListMongo |
user? | JWTUser |

Returns: Promise<AccessControlListMongo>

delete

▸ Privatedelete(id: string, user?: JWTUser): Promise<void>

Defined in src/security/ACLRouteMongo.ts:51

Parameters:

Name | Type |
—— | —— |
id | string |
user? | JWTUser |

Returns: Promise<void>

doCount

▸ ProtecteddoCount(params: any, query: any, user?: any): Promise<any>

Inherited from ModelRoute.doCount

Defined in src/routes/ModelRoute.ts:199

Attempts to retrieve the number of data model objects matching the given set of criteria as specified in the
request query. Any results that have been found are set to the result property of the res argument.
result is never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<any>

doCreate

▸ ProtecteddoCreate(obj: AccessControlListMongo, user?: any, acl?: AccessControlList): Promise<AccessControlListMongo>

Inherited from ModelRoute.doCreate

Defined in src/routes/ModelRoute.ts:226

Attempts to store the object provided in req.body into the datastore. Upon success, sets the newly persisted
object to the result property of the res argument, otherwise sends a 400 BAD REQUEST response to the
client.

Parameters:

Name | Type |
—— | —— |
obj | AccessControlListMongo |
user? | any |
acl? | AccessControlList |

Returns: Promise<AccessControlListMongo>

doDelete

▸ ProtecteddoDelete(id: string, user?: any): Promise<void>

Inherited from ModelRoute.doDelete

Defined in src/routes/ModelRoute.ts:290

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<void>

doDeleteVersion

▸ ProtecteddoDeleteVersion(id: string, version: number, user?: any): Promise<void>

Inherited from ModelRoute.doDeleteVersion

Defined in src/routes/ModelRoute.ts:334

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id for a specified version.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<void>

doFindAll

▸ ProtecteddoFindAll(params: any, query: any, user?: any): Promise<AccessControlListMongo[]>

Inherited from ModelRoute.doFindAll

Defined in src/routes/ModelRoute.ts:379

Attempts to retrieve all data model objects matching the given set of criteria as specified in the request
query. Any results that have been found are set to the result property of the res argument. result is
never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<AccessControlListMongo[]>

doFindById

▸ ProtecteddoFindById(id: string, user?: any): Promise<AccessControlListMongo | undefined>

Inherited from ModelRoute.doFindById

Defined in src/routes/ModelRoute.ts:448

Attempts to retrieve a single data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<AccessControlListMongo | undefined>

doFindByIdAndVersion

▸ ProtecteddoFindByIdAndVersion(id: string, version: number, user?: any): Promise<AccessControlListMongo | undefined>

Inherited from ModelRoute.doFindByIdAndVersion

Defined in src/routes/ModelRoute.ts:484

Attempts to retrieve a single data model object as identified by the id and version parameters in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<AccessControlListMongo | undefined>

doTruncate

▸ ProtecteddoTruncate(user?: any): Promise<void>

Inherited from ModelRoute.doTruncate

Defined in src/routes/ModelRoute.ts:522

Attempts to remove all entries of the data model type from the datastore.

Parameters:

Name | Type | Description |
—— | —— | —— |
user? | any | The authenticated user performing the action, otherwise undefined. |

Returns: Promise<void>

doUpdate

▸ ProtecteddoUpdate(id: string, obj: AccessControlListMongo, user?: any): Promise<AccessControlListMongo>

Inherited from ModelRoute.doUpdate

Defined in src/routes/ModelRoute.ts:550

Attempts to modify an existing data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
obj | AccessControlListMongo |
user? | any |

Returns: Promise<AccessControlListMongo>

findAll

▸ PrivatefindAll(params: any, query: any, user?: JWTUser): Promise<AccessControlListMongo[]>

Defined in src/security/ACLRouteMongo.ts:72

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | JWTUser |

Returns: Promise<AccessControlListMongo[]>

findById

▸ PrivatefindById(id: string, user?: any): Promise<AccessControlListMongo | undefined>

Defined in src/security/ACLRouteMongo.ts:87

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<AccessControlListMongo | undefined>

getDefaultACL

▸ ProtectedgetDefaultACL(): AccessControlList | undefined

Overrides ModelRoute.getDefaultACL

Defined in src/security/ACLRouteMongo.ts:33

Returns: AccessControlList | undefined

getObj

▸ ProtectedgetObj(id: string, version?: undefined | number): Promise<AccessControlListMongo | undefined>

Inherited from ModelRoute.getObj

Defined in src/routes/ModelRoute.ts:137

Retrieves the object with the given id from either the cache or the database. If retrieving from the database
the cache is populated to speed up subsequent requests.

Parameters:

Name | Type | Description |
—— | —— | —— |
id | string | The unique identifier of the object to retrieve. |
version? | undefined | number | The desired version number of the object to retrieve. If undefined returns the latest. |

Returns: Promise<AccessControlListMongo | undefined>

hashQuery

▸ ProtectedhashQuery(query: any): string

Inherited from ModelRoute.hashQuery

Defined in src/routes/ModelRoute.ts:84

Hashes the given query object to a unique string.

Parameters:

Name | Type | Description |
—— | —— | —— |
query | any | The query object to hash. |

Returns: string

update

▸ Privateupdate(id: string, obj: AccessControlListMongo, user?: JWTUser): Promise<AccessControlListMongo>

Defined in src/security/ACLRouteMongo.ts:102

Parameters:

Name | Type |
—— | —— |
id | string |
obj | AccessControlListMongo |
user? | JWTUser |

Returns: Promise<AccessControlListMongo>

 @composer-js/service-core

Globals / ACLRouteSQL

Class: ACLRouteSQL

Hierarchy

	ModelRoute<AccessControlListSQL>

↳ ACLRouteSQL

Index

Constructors

	constructor

Properties

	cacheClient

	cacheTTL

	config

	defaultACLUid

	logger

	repo

	trackChanges

Accessors

	baseCacheKey

	modelClass

Methods

	create

	delete

	doCount

	doCreate

	doDelete

	doDeleteVersion

	doFindAll

	doFindById

	doFindByIdAndVersion

	doTruncate

	doUpdate

	findAll

	findById

	getDefaultACL

	getObj

	hashQuery

	update

Constructors

constructor

+ new ACLRouteSQL(): ACLRouteSQL

Overrides ModelRoute.constructor

Defined in src/security/ACLRouteSQL.ts:20

Returns: ACLRouteSQL

Properties

cacheClient

• Protected Optional cacheClient: Redis

Inherited from ModelRoute.cacheClient

Defined in src/routes/ModelRoute.ts:33

The redis client that will be used as a 2nd level cache for all cacheable models.

cacheTTL

• Protected Optional cacheTTL: undefined | number

Inherited from ModelRoute.cacheTTL

Defined in src/routes/ModelRoute.ts:36

The time, in milliseconds, that objects will be cached before being invalidated.

config

• Private Optional config: any

Defined in src/security/ACLRouteSQL.ts:17

defaultACLUid

• Protected defaultACLUid: string = “”

Inherited from ModelRoute.defaultACLUid

Defined in src/routes/ModelRoute.ts:39

The unique identifier of the default ACL for the model type.

logger

• Protected logger: any

Inherited from ModelRoute.logger

Defined in src/routes/ModelRoute.ts:42

repo

• Protected Optional repo: Repo<AccessControlListSQL>

Overrides ModelRoute.repo

Defined in src/security/ACLRouteSQL.ts:20

trackChanges

• Protected trackChanges: number = 0

Inherited from ModelRoute.trackChanges

Defined in src/routes/ModelRoute.ts:51

The number of previous document versions to store in the database. A negative value indicates storing all
versions, a value of 0 stores no versions.

Accessors

baseCacheKey

• Protectedget baseCacheKey(): string

Overrides ModelRoute.baseCacheKey

Defined in src/security/ACLRouteSQL.ts:29

The base key used to get or set data in the cache.

Returns: string

modelClass

• Protectedget modelClass(): any

Inherited from ModelRoute.modelClass

Defined in src/routes/ModelRoute.ts:69

The class type of the model this route is associated with.

Returns: any

Methods

create

▸ Privatecreate(obj: AccessControlListSQL, user?: JWTUser): Promise<AccessControlListSQL>

Defined in src/security/ACLRouteSQL.ts:39

Parameters:

Name | Type |
—— | —— |
obj | AccessControlListSQL |
user? | JWTUser |

Returns: Promise<AccessControlListSQL>

delete

▸ Privatedelete(id: string, user?: JWTUser): Promise<void>

Defined in src/security/ACLRouteSQL.ts:51

Parameters:

Name | Type |
—— | —— |
id | string |
user? | JWTUser |

Returns: Promise<void>

doCount

▸ ProtecteddoCount(params: any, query: any, user?: any): Promise<any>

Inherited from ModelRoute.doCount

Defined in src/routes/ModelRoute.ts:199

Attempts to retrieve the number of data model objects matching the given set of criteria as specified in the
request query. Any results that have been found are set to the result property of the res argument.
result is never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<any>

doCreate

▸ ProtecteddoCreate(obj: AccessControlListSQL, user?: any, acl?: AccessControlList): Promise<AccessControlListSQL>

Inherited from ModelRoute.doCreate

Defined in src/routes/ModelRoute.ts:226

Attempts to store the object provided in req.body into the datastore. Upon success, sets the newly persisted
object to the result property of the res argument, otherwise sends a 400 BAD REQUEST response to the
client.

Parameters:

Name | Type |
—— | —— |
obj | AccessControlListSQL |
user? | any |
acl? | AccessControlList |

Returns: Promise<AccessControlListSQL>

doDelete

▸ ProtecteddoDelete(id: string, user?: any): Promise<void>

Inherited from ModelRoute.doDelete

Defined in src/routes/ModelRoute.ts:290

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<void>

doDeleteVersion

▸ ProtecteddoDeleteVersion(id: string, version: number, user?: any): Promise<void>

Inherited from ModelRoute.doDeleteVersion

Defined in src/routes/ModelRoute.ts:334

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id for a specified version.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<void>

doFindAll

▸ ProtecteddoFindAll(params: any, query: any, user?: any): Promise<AccessControlListSQL[]>

Inherited from ModelRoute.doFindAll

Defined in src/routes/ModelRoute.ts:379

Attempts to retrieve all data model objects matching the given set of criteria as specified in the request
query. Any results that have been found are set to the result property of the res argument. result is
never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<AccessControlListSQL[]>

doFindById

▸ ProtecteddoFindById(id: string, user?: any): Promise<AccessControlListSQL | undefined>

Inherited from ModelRoute.doFindById

Defined in src/routes/ModelRoute.ts:448

Attempts to retrieve a single data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<AccessControlListSQL | undefined>

doFindByIdAndVersion

▸ ProtecteddoFindByIdAndVersion(id: string, version: number, user?: any): Promise<AccessControlListSQL | undefined>

Inherited from ModelRoute.doFindByIdAndVersion

Defined in src/routes/ModelRoute.ts:484

Attempts to retrieve a single data model object as identified by the id and version parameters in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<AccessControlListSQL | undefined>

doTruncate

▸ ProtecteddoTruncate(user?: any): Promise<void>

Inherited from ModelRoute.doTruncate

Defined in src/routes/ModelRoute.ts:522

Attempts to remove all entries of the data model type from the datastore.

Parameters:

Name | Type | Description |
—— | —— | —— |
user? | any | The authenticated user performing the action, otherwise undefined. |

Returns: Promise<void>

doUpdate

▸ ProtecteddoUpdate(id: string, obj: AccessControlListSQL, user?: any): Promise<AccessControlListSQL>

Inherited from ModelRoute.doUpdate

Defined in src/routes/ModelRoute.ts:550

Attempts to modify an existing data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
obj | AccessControlListSQL |
user? | any |

Returns: Promise<AccessControlListSQL>

findAll

▸ PrivatefindAll(params: any, query: any, user?: JWTUser): Promise<AccessControlListSQL[]>

Defined in src/security/ACLRouteSQL.ts:72

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | JWTUser |

Returns: Promise<AccessControlListSQL[]>

findById

▸ PrivatefindById(id: string, user?: any): Promise<AccessControlListSQL | undefined>

Defined in src/security/ACLRouteSQL.ts:83

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<AccessControlListSQL | undefined>

getDefaultACL

▸ ProtectedgetDefaultACL(): AccessControlList | undefined

Overrides ModelRoute.getDefaultACL

Defined in src/security/ACLRouteSQL.ts:33

Returns: AccessControlList | undefined

getObj

▸ ProtectedgetObj(id: string, version?: undefined | number): Promise<AccessControlListSQL | undefined>

Inherited from ModelRoute.getObj

Defined in src/routes/ModelRoute.ts:137

Retrieves the object with the given id from either the cache or the database. If retrieving from the database
the cache is populated to speed up subsequent requests.

Parameters:

Name | Type | Description |
—— | —— | —— |
id | string | The unique identifier of the object to retrieve. |
version? | undefined | number | The desired version number of the object to retrieve. If undefined returns the latest. |

Returns: Promise<AccessControlListSQL | undefined>

hashQuery

▸ ProtectedhashQuery(query: any): string

Inherited from ModelRoute.hashQuery

Defined in src/routes/ModelRoute.ts:84

Hashes the given query object to a unique string.

Parameters:

Name | Type | Description |
—— | —— | —— |
query | any | The query object to hash. |

Returns: string

update

▸ Privateupdate(id: string, obj: AccessControlListSQL, user?: JWTUser): Promise<AccessControlListSQL>

Defined in src/security/ACLRouteSQL.ts:98

Parameters:

Name | Type |
—— | —— |
id | string |
obj | AccessControlListSQL |
user? | JWTUser |

Returns: Promise<AccessControlListSQL>

 @composer-js/service-core

Globals / ACLUtils

Class: ACLUtils

Common utility functions for working with AccessControlList objects and validating user permissions.

Hierarchy

	ACLUtils

Index

Properties

	cacheClient

	cacheTTL

	config

	repo

Methods

	checkRequestPerms

	findACL

	getRecord

	hasPermission

	init

	populateParent

	removeACL

	saveACL

	userMatchesId

Properties

cacheClient

• Private Optional cacheClient: Redis

Defined in src/security/ACLUtils.ts:20

cacheTTL

• Private cacheTTL: number = 30

Defined in src/security/ACLUtils.ts:21

config

• Private config: any

Defined in src/security/ACLUtils.ts:22

repo

• Private Optional repo: Repository<AccessControlListSQL> | MongoRepository<AccessControlListMongo>

Defined in src/security/ACLUtils.ts:23

Methods

checkRequestPerms

▸ checkRequestPerms(user: JWTUser | undefined, req: Request): Promise<boolean>

Defined in src/security/ACLUtils.ts:82

Validates that the user has permission to perform the request operation against the URL path for the
provided request. If ACLUtils has not been initialized or the acl datastore has not been configured
then always returns true.

Parameters:

Name | Type | Description |
—— | —— | —— |
user | JWTUser | undefined | The user to validate. |
req | Request | The request whose URL path and method will be verified. |

Returns: Promise<boolean>

findACL

▸ findACL(entityId: string): Promise<AccessControlList | undefined>

Defined in src/security/ACLUtils.ts:251

Retrieves the access control list with the associated identifier and populates the parent(s).

Parameters:

Name | Type | Description |
—— | —— | —— |
entityId | string | The unique identifier of the ACL to retrieve. |

Returns: Promise<AccessControlList | undefined>

getRecord

▸ getRecord(acl: AccessControlList, user: JWTUser | undefined): ACLRecord | undefined

Defined in src/security/ACLUtils.ts:349

Retrieves the first available record in the provided ACL associated with the provided user.

Parameters:

Name | Type | Description |
—— | —— | —— |
acl | AccessControlList | The access control list that will be searched. |
user | JWTUser | undefined | The user to find a record for. |

Returns: ACLRecord | undefined

The ACL record associated with the given user if found, otherwise undefined.

hasPermission

▸ hasPermission(user: JWTUser | undefined, acl: AccessControlList | string, action: ACLAction): Promise<boolean>

Defined in src/security/ACLUtils.ts:178

Validates that the user has permission to perform the provided action using the given access control list.

Parameters:

Name | Type | Description |
—— | —— | —— |
user | JWTUser | undefined | The user to validate permissions of. |
acl | AccessControlList | string | The ACL or uid of an ACL to validate permissions against. |
action | ACLAction | The action that the user desires permission for. |

Returns: Promise<boolean>

true if the user has at least one of the permissions granted for the given entity, otherwise false.

init

▸ init(config: any): void

Defined in src/security/ACLUtils.ts:28

Initializes the utility with the provided defaults.

Parameters:

Name | Type |
—— | —— |
config | any |

Returns: void

populateParent

▸ populateParent(acl: AccessControlList): Promise<void>

Defined in src/security/ACLUtils.ts:364

Attempts to retrieve the parent access control list for the given ACL object.

Parameters:

Name | Type | Description |
—— | —— | —— |
acl | AccessControlList | The access control list whose parents will be populated. |

Returns: Promise<void>

removeACL

▸ removeACL(uid: string): Promise<void>

Defined in src/security/ACLUtils.ts:296

Deletes the ACL with the given identifier from the database.

Parameters:

Name | Type | Description |
—— | —— | —— |
uid | string | The unique identifier of the ACL to remove. |

Returns: Promise<void>

saveACL

▸ saveACL(acl: AccessControlList): Promise<AccessControlList | undefined>

Defined in src/security/ACLUtils.ts:314

Stores the given access control list into the ACL database.

Parameters:

Name | Type | Description |
—— | —— | —— |
acl | AccessControlList | The ACL to store. |

Returns: Promise<AccessControlList | undefined>

Returns the ACL that was stored in the database.

userMatchesId

▸ PrivateuserMatchesId(user: JWTUser | undefined, userOrRoleId: string): boolean

Defined in src/security/ACLUtils.ts:53

Checks to see if the provided user matches the providedUserOrRoleId.

Parameters:

Name | Type | Description |
—— | —— | —— |
user | JWTUser | undefined | The user to check. |
userOrRoleId | string | The ACL record id to check against. |

Returns: boolean

true if the user contains a uid or role that matches the userOrRoleId, otherwise false.

 @composer-js/service-core

Globals / BackgroundService

Class: BackgroundService

The BackgroundService is an abstract base class for defining scheduled background services. A background service
executes in the background on a set schedule (like a cron job) and performs additional processing.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	BackgroundService

Index

Constructors

	constructor

Properties

	config

	logger

Methods

	run

	start

	stop

Constructors

constructor

+ new BackgroundService(config: any, logger: any): BackgroundService

Defined in src/BackgroundService.ts:14

Parameters:

Name | Type |
—— | —— |
config | any |
logger | any |

Returns: BackgroundService

Properties

config

• Protected config: any

Defined in src/BackgroundService.ts:12

The global application configuration that the service can reference.

logger

• Protected logger: any

Defined in src/BackgroundService.ts:14

The logging utility to use.

Methods

run

▸ Abstractrun(): Promise<void> | void

Defined in src/BackgroundService.ts:24

The processing function to execute at each scheduled interval.

Returns: Promise<void> | void

start

▸ Abstractstart(): Promise<void> | void

Defined in src/BackgroundService.ts:29

Initializes the background service with any defaults.

Returns: Promise<void> | void

stop

▸ Abstractstop(): Promise<void> | void

Defined in src/BackgroundService.ts:34

Shuts down the background allowing the service to complete any outstanding tasks.

Returns: Promise<void> | void

 @composer-js/service-core

Globals / BackgroundServiceManager

Class: BackgroundServiceManager

The BackgroundServiceManager manages all configured background services in the application. It is responsible for
initializing the jobs, scheduling them and performing any related shutdown tasks. See the BackgroundService
class for details on how to create a background service class to be used by this manager.

Usage

To use the manager instantiate a new object and provide the required constructor arguments. Then simply call the
startAll function. When shutting your application down you should call the stopAll function.

import { BackgroundServiceManager } from "@acceleratxr/services_manager";

const manager: BackgroundServiceManager = new BackgroundServiceManager(".", config, logger);
await manager.startAll();
...
await manager.stopAll();

You may optionally start and stop individual services using the start and stop functions respectively.

await manager.start("MyService");
...
await manger.stop("MyService");

Configuration

Background services are defined in the global configuration file under the key jobs. The jobs object is a
standard map where the key is the service name (class/module name). Each configured service must have the
schedule property defined. If not, the jobs.defaultSchedule is applied for that service.

Example:

{
 jobs: {
 defaultSchedule: "* * * * * *",
 MyService: {
 schedule: "* * * * * *"
 },
 }
}

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	BackgroundServiceManager

Index

Constructors

	constructor

Properties

	classLoader

	config

	jobs

	loaded

	logger

	services

Methods

	getService

	start

	startAll

	stop

	stopAll

Constructors

constructor

+ new BackgroundServiceManager(basePath: string, config: any, logger: any): BackgroundServiceManager

Defined in src/BackgroundServiceManager.ts:60

Parameters:

Name | Type |
—— | —— |
basePath | string |
config | any |
logger | any |

Returns: BackgroundServiceManager

Properties

classLoader

• Private classLoader: ClassLoader

Defined in src/BackgroundServiceManager.ts:55

config

• Private Readonly config: any

Defined in src/BackgroundServiceManager.ts:56

jobs

• Private jobs: any

Defined in src/BackgroundServiceManager.ts:57

loaded

• Private loaded: boolean = false

Defined in src/BackgroundServiceManager.ts:58

logger

• Private Readonly logger: any

Defined in src/BackgroundServiceManager.ts:59

services

• Private services: any

Defined in src/BackgroundServiceManager.ts:60

Methods

getService

▸ getService(name: string): BackgroundService

Defined in src/BackgroundServiceManager.ts:73

Returns the service instance with the given name.

Parameters:

Name | Type | Description |
—— | —— | —— |
name | string | The name of the background service to retrieve. |

Returns: BackgroundService

start

▸ start(serviceName: string): Promise<void>

Defined in src/BackgroundServiceManager.ts:106

Starts the background service with the given name.

Parameters:

Name | Type | Description |
—— | —— | —— |
serviceName | string | The name of the background service to start. |

Returns: Promise<void>

startAll

▸ startAll(): Promise<void>

Defined in src/BackgroundServiceManager.ts:80

Starts all configured background services.

Returns: Promise<void>

stop

▸ stop(serviceName: string): Promise<void>

Defined in src/BackgroundServiceManager.ts:153

Stops the background service with the given name.

Parameters:

Name | Type | Description |
—— | —— | —— |
serviceName | string | The name of the background service to stop. |

Returns: Promise<void>

stopAll

▸ stopAll(): Promise<void>

Defined in src/BackgroundServiceManager.ts:138

Stops all currently active background services that are owned by the manager.

Returns: Promise<void>

 @composer-js/service-core

Globals / BaseEntity

Class: BaseEntity

Provides a common base class for all entity’s that will be persisted with TypeORM.
Provides a simple base class for all entity’s that will be persisted with TypeORM. Unlike BaseEntity this class
does not provide optimistic locking or date created and modified tracking.

Note that the @CreateDateColumn, @UpdateDateColumn, and @VersionColumn decorators from TypeORM are not supported
because they are not implemented in TypeORM’s MongoDB support. They are instead implemented directly by this
library as part of ModelRoute.

author Jean-Philippe Steinmetz info@acceleratxr.com

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	BaseEntity

↳ AccessControlListSQL

↳ BaseMongoEntity

Index

Constructors

	constructor

Properties

	dateCreated

	dateModified

	uid

	version

Constructors

constructor

+ new BaseEntity(other?: any): BaseEntity

Defined in src/models/BaseEntity.ts:42

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: BaseEntity

Properties

dateCreated

• dateCreated: Date = new Date()

Defined in src/models/BaseEntity.ts:30

The date and time that the entity was created.

dateModified

• dateModified: Date = new Date()

Defined in src/models/BaseEntity.ts:36

The date and time that the entity was last modified.

uid

• uid: string = uuid.v4()

Defined in src/models/BaseEntity.ts:24

Defined in src/models/SimpleEntity.ts:21

The universally unique identifier of the entity.
The universally unique identifier of the entity.

version

• version: number = 0

Defined in src/models/BaseEntity.ts:42

The optimistic lock version.

 @composer-js/service-core

Globals / BaseMongoEntity

Class: BaseMongoEntity

Provides a common base class for all entity’s that will be persisted with TypeORM in a MongoDB database.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	BaseEntity

↳ BaseMongoEntity

↳↳ AccessControlListMongo

Index

Constructors

	constructor

Properties

	_id

	dateCreated

	dateModified

	uid

	version

Constructors

constructor

+ new BaseMongoEntity(other?: any): BaseMongoEntity

Overrides BaseEntity.constructor

Defined in src/models/BaseMongoEntity.ts:18

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: BaseMongoEntity

Properties

_id

• Optional _id: ObjectID

Defined in src/models/BaseMongoEntity.ts:18

The internal unique identifier used by MongoDB.

dateCreated

• dateCreated: Date = new Date()

Inherited from BaseEntity.dateCreated

Defined in src/models/BaseEntity.ts:30

The date and time that the entity was created.

dateModified

• dateModified: Date = new Date()

Inherited from BaseEntity.dateModified

Defined in src/models/BaseEntity.ts:36

The date and time that the entity was last modified.

uid

• uid: string = uuid.v4()

Inherited from BaseEntity.uid

Defined in src/models/BaseEntity.ts:24

The universally unique identifier of the entity.

version

• version: number = 0

Inherited from BaseEntity.version

Defined in src/models/BaseEntity.ts:42

The optimistic lock version.

 @composer-js/service-core

Globals / ConnectionManager

Class: ConnectionManager

Provides database connection management.

author Jean-Philippe Steinmetz

Hierarchy

	ConnectionManager

Index

Properties

	connections

Methods

	connect

	disconnect

Properties

connections

▪ Static connections: Map<string, Connection | Redis.Redis> = new Map()

Defined in src/database/ConnectionManager.ts:16

Methods

connect

▸ Staticconnect(datastores: any, models: any): Promise<void>

Defined in src/database/ConnectionManager.ts:24

Attempts to initiate all database connections as defined in the config.

Parameters:

Name | Type | Description |
—— | —— | —— |
datastores | any | - |
models | any | A map of model names and associated class definitions to establish database connections for. |

Returns: Promise<void>

disconnect

▸ Staticdisconnect(): Promise<void>

Defined in src/database/ConnectionManager.ts:85

Attempts to disconnect all active database connections.

Returns: Promise<void>

 @composer-js/service-core

Globals / IndexRoute

Class: IndexRoute

The IndexRoute provides a default / endpoint the returns metadata information about the service such as
name, version.

author Jean-Philippe Steinmetz

Hierarchy

	IndexRoute

Index

Constructors

	constructor

Properties

	config

Methods

	get

Constructors

constructor

+ new IndexRoute(config: any): IndexRoute

Defined in src/routes/IndexRoute.ts:15

Parameters:

Name | Type |
—— | —— |
config | any |

Returns: IndexRoute

Properties

config

• Private config: any

Defined in src/routes/IndexRoute.ts:15

Methods

get

▸ Privateget(): any

Defined in src/routes/IndexRoute.ts:22

Returns: any

 @composer-js/service-core

Globals / JWTStrategy

Class: JWTStrategy

Passport strategy for handling JSON Web Token authentication. This strategy performs JWT verification and will
search for a token by one of the following methods (in order of precedence).

	Cookie

	Query Parameter

	Header

author Jean-Philippe Steinmetz

Hierarchy

	Strategy

↳ JWTStrategy

Implements

	Strategy

Index

Constructors

	constructor

Properties

	options

Methods

	authenticate

	error

	fail

	pass

	redirect

	success

Constructors

constructor

+ new JWTStrategy(options: Options): JWTStrategy

Defined in src/passportjs/JWTStrategy.ts:40

Parameters:

Name | Type |
—— | —— |
options | Options |

Returns: JWTStrategy

Properties

options

• Private options: Options

Defined in src/passportjs/JWTStrategy.ts:40

Methods

authenticate

▸ authenticate(req: Request, options?: any): void

Overrides void

Defined in src/passportjs/JWTStrategy.ts:48

Parameters:

Name | Type |
—— | —— |
req | Request |
options? | any |

Returns: void

error

▸ error(err: Error): void

Inherited from JWTStrategy.error

Defined in node_modules/@types/passport-strategy/index.d.ts:96

Internal error while performing authentication.

Strategies should call this function when an internal error occurs
during the process of performing authentication; for example, if the
user directory is not available.

api public

Parameters:

Name | Type |
—— | —— |
err | Error |

Returns: void

fail

▸ fail(challenge: any, status: number): void

Inherited from JWTStrategy.fail

Defined in node_modules/@types/passport-strategy/index.d.ts:60

Fail authentication, with optional challenge and status, defaulting
to 401.

Strategies should call this function to fail an authentication attempt.

api public

Parameters:

Name | Type | Description |
—— | —— | —— |
challenge | any | (Can also be an object with ‘message’ and ‘type’ fields). |
status | number | |

Returns: void

▸ fail(status: number): void

Inherited from JWTStrategy.fail

Defined in node_modules/@types/passport-strategy/index.d.ts:61

Parameters:

Name | Type |
—— | —— |
status | number |

Returns: void

pass

▸ pass(): void

Inherited from JWTStrategy.pass

Defined in node_modules/@types/passport-strategy/index.d.ts:84

Pass without making a success or fail decision.

Under most circumstances, Strategies should not need to call this
function. It exists primarily to allow previous authentication state
to be restored, for example from an HTTP session.

api public

Returns: void

redirect

▸ redirect(url: string, status?: undefined | number): void

Inherited from JWTStrategy.redirect

Defined in node_modules/@types/passport-strategy/index.d.ts:73

Redirect to url with optional status, defaulting to 302.

Strategies should call this function to redirect the user (via their
user agent) to a third-party website for authentication.

api public

Parameters:

Name | Type |
—— | —— |
url | string |
status? | undefined | number |

Returns: void

success

▸ success(user: any, info?: any): void

Inherited from JWTStrategy.success

Defined in node_modules/@types/passport-strategy/index.d.ts:48

Authenticate user, with optional info.

Strategies should call this function to successfully authenticate a
user. user should be an object supplied by the application after it
has been given an opportunity to verify credentials. info is an
optional argument containing additional user information. This is
useful for third-party authentication strategies to pass profile
details.

api public

Parameters:

Name | Type |
—— | —— |
user | any |
info? | any |

Returns: void

 @composer-js/service-core

Globals / MetricsRoute

Class: MetricsRoute

Handles all REST API requests for the endpoint `/metrics’. This route handler produces Prometheus compatible metrics
for use with a Prometheus based server.

Services that wish to provide metrics to be exposed via this route can register them using the global registry
from the provided prom-client dependency. See the prom-client documentation for more details.

Hierarchy

	MetricsRoute

Index

Constructors

	constructor

Properties

	config

	registry

Methods

	getMetrics

	getSingleMetric

Constructors

constructor

+ new MetricsRoute(config: any): MetricsRoute

Defined in src/routes/MetricsRoute.ts:17

Parameters:

Name | Type |
—— | —— |
config | any |

Returns: MetricsRoute

Properties

config

• Private config: any

Defined in src/routes/MetricsRoute.ts:16

registry

• Private registry: Registry

Defined in src/routes/MetricsRoute.ts:17

Methods

getMetrics

▸ PrivategetMetrics(): Promise<string>

Defined in src/routes/MetricsRoute.ts:26

Returns: Promise<string>

getSingleMetric

▸ PrivategetSingleMetric(metric: any): string

Defined in src/routes/MetricsRoute.ts:32

Parameters:

Name | Type |
—— | —— |
metric | any |

Returns: string

 @composer-js/service-core

Globals / ModelRoute

Class: ModelRoute<T>

The ModelRoute is an abstract base class that provides a set of built-in route behavior functions for handling
requests for a given data model that is managed by a persistent datastore.

Provided behaviors:

	count - Counts the number of objects matching the provided set of criteria in the request’s query parameters.

	create - Adds a new object to the datastore.

	delete - Removes an existing object from the datastore.

	find - Finds all objects matching the provided set of criteria in the request’s query parameters.

	findById - Finds a single object with a specified unique identifier.

	truncate - Removes all objects from the datastore.

	update - Modifies an existing object in the datastore.

author Jean-Philippe Steinmetz

Type parameters

Name | Type |
—— | —— |
T | BaseEntity | SimpleEntity |

Hierarchy

	ModelRoute

↳ ACLRouteMongo

↳ ACLRouteSQL

Index

Constructors

	constructor

Properties

	cacheClient

	cacheTTL

	defaultACLUid

	logger

	repo

	trackChanges

Accessors

	baseCacheKey

	modelClass

Methods

	doCount

	doCreate

	doDelete

	doDeleteVersion

	doFindAll

	doFindById

	doFindByIdAndVersion

	doTruncate

	doUpdate

	getDefaultACL

	getObj

	hashQuery

	searchIdQuery

	superInitialize

Constructors

constructor

+ Protectednew ModelRoute(): ModelRoute

Defined in src/routes/ModelRoute.ts:51

Initializes a new instance using any defaults.

Returns: ModelRoute

Properties

cacheClient

• Protected Optional cacheClient: Redis

Defined in src/routes/ModelRoute.ts:33

The redis client that will be used as a 2nd level cache for all cacheable models.

cacheTTL

• Protected Optional cacheTTL: undefined | number

Defined in src/routes/ModelRoute.ts:36

The time, in milliseconds, that objects will be cached before being invalidated.

defaultACLUid

• Protected defaultACLUid: string = “”

Defined in src/routes/ModelRoute.ts:39

The unique identifier of the default ACL for the model type.

logger

• Protected logger: any

Defined in src/routes/ModelRoute.ts:42

repo

• Protected Optional Abstract repo: Repository<T> | MongoRepository<T>

Defined in src/routes/ModelRoute.ts:45

The model class associated with the controller to perform operations against.

trackChanges

• Protected trackChanges: number = 0

Defined in src/routes/ModelRoute.ts:51

The number of previous document versions to store in the database. A negative value indicates storing all
versions, a value of 0 stores no versions.

Accessors

baseCacheKey

• Protectedget baseCacheKey(): string

Defined in src/routes/ModelRoute.ts:61

The base key used to get or set data in the cache.

Returns: string

modelClass

• Protectedget modelClass(): any

Defined in src/routes/ModelRoute.ts:69

The class type of the model this route is associated with.

Returns: any

Methods

doCount

▸ ProtecteddoCount(params: any, query: any, user?: any): Promise<any>

Defined in src/routes/ModelRoute.ts:199

Attempts to retrieve the number of data model objects matching the given set of criteria as specified in the
request query. Any results that have been found are set to the result property of the res argument.
result is never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<any>

doCreate

▸ ProtecteddoCreate(obj: T, user?: any, acl?: AccessControlList): Promise<T>

Defined in src/routes/ModelRoute.ts:226

Attempts to store the object provided in req.body into the datastore. Upon success, sets the newly persisted
object to the result property of the res argument, otherwise sends a 400 BAD REQUEST response to the
client.

Parameters:

Name | Type |
—— | —— |
obj | T |
user? | any |
acl? | AccessControlList |

Returns: Promise<T>

doDelete

▸ ProtecteddoDelete(id: string, user?: any): Promise<void>

Defined in src/routes/ModelRoute.ts:290

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<void>

doDeleteVersion

▸ ProtecteddoDeleteVersion(id: string, version: number, user?: any): Promise<void>

Defined in src/routes/ModelRoute.ts:334

Attempts to delete an existing data model object with a given unique identifier encoded by the URI parameter
id for a specified version.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<void>

doFindAll

▸ ProtecteddoFindAll(params: any, query: any, user?: any): Promise<T[]>

Defined in src/routes/ModelRoute.ts:379

Attempts to retrieve all data model objects matching the given set of criteria as specified in the request
query. Any results that have been found are set to the result property of the res argument. result is
never null.

Parameters:

Name | Type |
—— | —— |
params | any |
query | any |
user? | any |

Returns: Promise<T[]>

doFindById

▸ ProtecteddoFindById(id: string, user?: any): Promise<T | undefined>

Defined in src/routes/ModelRoute.ts:448

Attempts to retrieve a single data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
user? | any |

Returns: Promise<T | undefined>

doFindByIdAndVersion

▸ ProtecteddoFindByIdAndVersion(id: string, version: number, user?: any): Promise<T | undefined>

Defined in src/routes/ModelRoute.ts:484

Attempts to retrieve a single data model object as identified by the id and version parameters in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
version | number |
user? | any |

Returns: Promise<T | undefined>

doTruncate

▸ ProtecteddoTruncate(user?: any): Promise<void>

Defined in src/routes/ModelRoute.ts:522

Attempts to remove all entries of the data model type from the datastore.

Parameters:

Name | Type | Description |
—— | —— | —— |
user? | any | The authenticated user performing the action, otherwise undefined. |

Returns: Promise<void>

doUpdate

▸ ProtecteddoUpdate(id: string, obj: T, user?: any): Promise<T>

Defined in src/routes/ModelRoute.ts:550

Attempts to modify an existing data model object as identified by the id parameter in the URI.

Parameters:

Name | Type |
—— | —— |
id | string |
obj | T |
user? | any |

Returns: Promise<T>

getDefaultACL

▸ Protected AbstractgetDefaultACL(): AccessControlList | undefined

Defined in src/routes/ModelRoute.ts:78

Returns the default access control list governing the model type. Returning a value of undefined will grant
full acccess to any user (including unauthenticated anonymous users).

Returns: AccessControlList | undefined

getObj

▸ ProtectedgetObj(id: string, version?: undefined | number): Promise<T | undefined>

Defined in src/routes/ModelRoute.ts:137

Retrieves the object with the given id from either the cache or the database. If retrieving from the database
the cache is populated to speed up subsequent requests.

Parameters:

Name | Type | Description |
—— | —— | —— |
id | string | The unique identifier of the object to retrieve. |
version? | undefined | number | The desired version number of the object to retrieve. If undefined returns the latest. |

Returns: Promise<T | undefined>

hashQuery

▸ ProtectedhashQuery(query: any): string

Defined in src/routes/ModelRoute.ts:84

Hashes the given query object to a unique string.

Parameters:

Name | Type | Description |
—— | —— | —— |
query | any | The query object to hash. |

Returns: string

searchIdQuery

▸ PrivatesearchIdQuery(id: string, version?: undefined | number): any

Defined in src/routes/ModelRoute.ts:190

Search for existing object based on passed in id and version

Parameters:

Name | Type |
—— | —— |
id | string |
version? | undefined | number |

Returns: any

superInitialize

▸ PrivatesuperInitialize(): Promise<void>

Defined in src/routes/ModelRoute.ts:95

Called on server startup to initialize the route with any defaults.

Returns: Promise<void>

 @composer-js/service-core

Globals / ModelUtils

Class: ModelUtils

Utility class for working with data model classes.

author Jean-Philippe Steinmetz

Hierarchy

	ModelUtils

Index

Methods

	buildIdSearchQuery

	buildIdSearchQueryMongo

	buildIdSearchQuerySQL

	buildSearchQuery

	buildSearchQueryMongo

	buildSearchQuerySQL

	getIdPropertyNames

	getQueryParamValue

	getQueryParamValueMongo

	loadModels

Methods

buildIdSearchQuery

▸ StaticbuildIdSearchQuery<T>(repo: Repository<T> | MongoRepository<T> | undefined, modelClass: any, id: any, version?: undefined | number): any

Defined in src/models/ModelUtils.ts:67

Builds a query object for use with find functions of the given repository for retrieving objects matching the
specified unique identifier.

Type parameters:

Name |
—— |
T |

Parameters:

Name | Type | Description |
—— | —— | —— |
repo | Repository<T> | MongoRepository<T> | undefined | The repository to build the query for. |
modelClass | any | The class definition of the data model to build a search query for. |
id | any | The unique identifier to search for. |
version? | undefined | number | - |

Returns: any

An object that can be passed to a TypeORM find function.

buildIdSearchQueryMongo

▸ StaticbuildIdSearchQueryMongo(modelClass: any, id: any, version?: undefined | number): any

Defined in src/models/ModelUtils.ts:111

Builds a MongoDB compatible query object for use in find functions for retrieving objects matching the
specified unique identifier.

Parameters:

Name | Type | Description |
—— | —— | —— |
modelClass | any | The class definition of the data model to build a search query for. |
id | any | The unique identifier to search for. |
version? | undefined | number | The version number of the document to search for. |

Returns: any

An object that can be passed to a MongoDB find function.

buildIdSearchQuerySQL

▸ StaticbuildIdSearchQuerySQL(modelClass: any, id: any, version?: undefined | number): any

Defined in src/models/ModelUtils.ts:89

Builds a TypeORM compatible query object for use in find functions for retrieving objects matching the
specified unique identifier.

Parameters:

Name | Type | Description |
—— | —— | —— |
modelClass | any | The class definition of the data model to build a search query for. |
id | any | The unique identifier to search for. |
version? | undefined | number | The version number of the document to search for. |

Returns: any

An object that can be passed to a TypeORM find function.

buildSearchQuery

▸ StaticbuildSearchQuery<T>(modelClass: any, repo: Repository<T> | MongoRepository<T> | undefined, params?: any, queryParams?: any, exactMatch?: boolean, user?: any): any

Defined in src/models/ModelUtils.ts:305

Builds a query object for the given criteria and repository. Query params can have a value containing a
conditional operator to apply for the search. The operator is encoded with the format op(value). The following
operators are supported:

	eq - Returns matches whose parameter exactly matches of the given value. e.g. param = value

	gt - Returns matches whose parameter is greater than the given value. e.g. param > value

	gte - Returns matches whose parameter is greater than or equal to the given value. e.g. param >= value

	in - Returns matches whose parameter includes one of the given values. e.g. param in ('value1', 'value2', 'value3', ...)

	like - Returns matches whose parameter is lexographically similar to the given value. param like value

	lt - Returns matches whose parameter is less than the given value. e.g. param < value

	lte - Returns matches whose parameter is less than or equal to than the given value. e.g. param < value

	not - Returns matches whose parameter is not equal to the given value. e.g. param not value

	range - Returns matches whose parameter is greater than or equal to first given value and less than or equal to the second. e.g. param between(1,100)

When no operator is provided the comparison will always be evaluated as eq.

Type parameters:

Name |
—— |
T |

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
modelClass | any | - | The class definition of the data model to build a search query for. |
repo | Repository<T> | MongoRepository<T> | undefined | - | The repository to build a search query for. |
params? | any | - | The URI parameters for the endpoint that was requested. |
queryParams? | any | - | The URI query parameters that were included in the request. |
exactMatch | boolean | false | Set to true to create a query where parameters are to be matched exactly, otherwise set to false to use a ‘contains’ search. |
user? | any | - | The user that is performing the request. |

Returns: any

The TypeORM compatible query object.

buildSearchQueryMongo

▸ StaticbuildSearchQueryMongo(modelClass: any, params?: any, queryParams?: any, exactMatch?: boolean, user?: any): any

Defined in src/models/ModelUtils.ts:481

Builds a MongoDB compatible query object for the given criteria. Query params can have a value containing a
conditional operator to apply for the search. The operator is encoded with the format op(value). The following
operators are supported:

	eq - Returns matches whose parameter exactly matches of the given value. e.g. param = value

	gt - Returns matches whose parameter is greater than the given value. e.g. param > value

	gte - Returns matches whose parameter is greater than or equal to the given value. e.g. param >= value

	in - Returns matches whose parameter includes one of the given values. e.g. param in ('value1', 'value2', 'value3', ...)

	like - Returns matches whose parameter is lexographically similar to the given value. param like value

	lt - Returns matches whose parameter is less than the given value. e.g. param < value

	lte - Returns matches whose parameter is less than or equal to than the given value. e.g. param < value

	not - Returns matches whose parameter is not equal to the given value. e.g. param not value

	range - Returns matches whose parameter is greater than or equal to first given value and less than or equal to the second. e.g. param between(1,100)

When no operator is provided the comparison will always be evaluated as eq.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
modelClass | any | - | The class definition of the data model to build a search query for. |
params? | any | - | The URI parameters for the endpoint that was requested. |
queryParams? | any | - | The URI query parameters that were included in the request. |
exactMatch | boolean | false | Set to true to create a query where parameters are to be matched exactly, otherwise set to false to use a ‘contains’ search. |
user? | any | - | The user that is performing the request. |

Returns: any

The TypeORM compatible query object.

buildSearchQuerySQL

▸ StaticbuildSearchQuerySQL(modelClass: any, params?: any, queryParams?: any, exactMatch?: boolean, user?: any): any

Defined in src/models/ModelUtils.ts:344

Builds a TypeORM compatible query object for the given criteria. Query params can have a value containing a
conditional operator to apply for the search. The operator is encoded with the format op(value). The following
operators are supported:

	eq - Returns matches whose parameter exactly matches of the given value. e.g. param = value

	gt - Returns matches whose parameter is greater than the given value. e.g. param > value

	gte - Returns matches whose parameter is greater than or equal to the given value. e.g. param >= value

	in - Returns matches whose parameter includes one of the given values. e.g. param in ('value1', 'value2', 'value3', ...)

	like - Returns matches whose parameter is lexographically similar to the given value. param like value

	lt - Returns matches whose parameter is less than the given value. e.g. param < value

	lte - Returns matches whose parameter is less than or equal to than the given value. e.g. param < value

	not - Returns matches whose parameter is not equal to the given value. e.g. param not value

	range - Returns matches whose parameter is greater than or equal to first given value and less than or equal to the second. e.g. param between(1,100)

When no operator is provided the comparison will always be evaluated as eq.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
modelClass | any | - | The class definition of the data model to build a search query for. |
params? | any | - | The URI parameters for the endpoint that was requested. |
queryParams? | any | - | The URI query parameters that were included in the request. |
exactMatch | boolean | false | Set to true to create a query where parameters are to be matched exactly, otherwise set to false to use a ‘contains’ search. |
user? | any | - | The user that is performing the request. |

Returns: any

The TypeORM compatible query object.

getIdPropertyNames

▸ StaticgetIdPropertyNames(modelClass: any): string[]

Defined in src/models/ModelUtils.ts:37

Retrieves a list of all of the specified class’s properties that have the @Identifier decorator applied.

Parameters:

Name | Type | Description |
—— | —— | —— |
modelClass | any | The class definition to search for identifiers from. |

Returns: string[]

The list of all property names that have the @Identifier decorator applied.

getQueryParamValue

▸ Static PrivategetQueryParamValue(param: string): any

Defined in src/models/ModelUtils.ts:136

Given a string containing a parameter value and/or a comparison operation return a TypeORM compatible find value.
e.g.
Given the string “myvalue” will return an Eq(“myvalue”) object.
Given the string “Like(myvalue)” will return an Like(“myvalue”) object.

Parameters:

Name | Type | Description |
—— | —— | —— |
param | string | |

Returns: any

getQueryParamValueMongo

▸ Static PrivategetQueryParamValueMongo(param: string): any

Defined in src/models/ModelUtils.ts:212

Given a string containing a parameter value and/or a comparison operation return a MongoDB compatible find value.
e.g.
Given the string “myvalue” will return an "myvalue" object.
Given the string “not(myvalue)” will return an { $not: "myvalue" } object.

Parameters:

Name | Type | Description |
—— | —— | —— |
param | string | |

Returns: any

loadModels

▸ StaticloadModels(src: string, result?: any): Promise<any>

Defined in src/models/ModelUtils.ts:575

Loads all model schema files from the specified path and returns a map containing all the definitions.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
src | string | - | The path to the model files to load. |
result | any | {} | - |

Returns: Promise<any>

A map containing of all loaded model names to their class definitions.

 @composer-js/service-core

Globals / NotificationUtils

Class: NotificationUtils

Utility functions for sending push notifications to registered clients.

author Jean-Philippe Steinmetz

Hierarchy

	NotificationUtils

Index

Constructors

	constructor

Properties

	socketio

Methods

	broadcastMessage

	sendMessage

Constructors

constructor

+ new NotificationUtils(config: any): NotificationUtils

Defined in src/NotificationsUtils.ts:11

Initializes the utility using the given configuration.

Parameters:

Name | Type | Description |
—— | —— | —— |
config | any | The configuration to use for initialization. |

Returns: NotificationUtils

Properties

socketio

• Private socketio: any = null

Defined in src/NotificationsUtils.ts:11

Methods

broadcastMessage

▸ broadcastMessage(type: any, message: any, volatile: boolean): void

Defined in src/NotificationsUtils.ts:29

Broadcasts a given message to all users.

Parameters:

Name | Type | Description |
—— | —— | —— |
type | any | The type of message being sent. |
message | any | The message contents to send to all users. |
volatile | boolean | Set to true if the message can be dropped (unreliable). |

Returns: void

sendMessage

▸ sendMessage(uid: string, type: string, message: any, volatile: boolean): void

Defined in src/NotificationsUtils.ts:49

Sends a given message to the room or user with the specified uid.

Parameters:

Name | Type | Description |
—— | —— | —— |
uid | string | The universally unique identifier of the room or user to send the message to. |
type | string | The type of message being sent. |
message | any | The message contents to send to the room or user. |
volatile | boolean | Set to true if the message can be dropped (unreliable). |

Returns: void

 @composer-js/service-core

Globals / ObjectFactory

Class: ObjectFactory

The ObjectFactory is a manager for creating objects based on registered
class types. This allows for the tracking of multiple instances of objects
so that references can be referenced by unique name.

author Jean-Philippe Steinmetz

Hierarchy

	ObjectFactory

Index

Constructors

	constructor

Properties

	classes

	config

	instances

	logger

Methods

	clear

	clearAll

	destroy

	getInitMethods

	getInstance

	initialize

	newInstance

	register

Constructors

constructor

+ new ObjectFactory(config?: any, logger?: any): ObjectFactory

Defined in src/ObjectFactory.ts:33

Parameters:

Name | Type |
—— | —— |
config? | any |
logger? | any |

Returns: ObjectFactory

Properties

classes

• Private classes: Map<string, any> = new Map()

Defined in src/ObjectFactory.ts:24

A map for string fully qualified class names to their class types.

config

• Private config: any

Defined in src/ObjectFactory.ts:27

The global application configuration object.

instances

• Readonly instances: Map<string, any> = new Map()

Defined in src/ObjectFactory.ts:30

A map for the unique name to the intance of a particular class type.

logger

• Private logger: any

Defined in src/ObjectFactory.ts:33

The application logging utility.

Methods

clear

▸ clear(): void

Defined in src/ObjectFactory.ts:84

Deletes all instantiated objects.

Returns: void

clearAll

▸ clearAll(): void

Defined in src/ObjectFactory.ts:91

Deletes all instantiated objects and registered class types.

Returns: void

destroy

▸ destroy(): Promise<void>

Defined in src/ObjectFactory.ts:43

Destroys the factory including all instantiated objects it is managing.

Returns: Promise<void>

getInitMethods

▸ getInitMethods(obj: any): Function[]

Defined in src/ObjectFactory.ts:211

Searches an object for one or more functions that implement a @Init decorator.

Parameters:

Name | Type | Description |
—— | —— | —— |
obj | any | The object to search. |

Returns: Function[]

The list of functions that implements the @Init decorator if found, otherwise undefined.

getInstance

▸ getInstance<T>(nameOrType: any): T

Defined in src/ObjectFactory.ts:242

Returns the object instance with the given unique name.

Type parameters:

Name |
—— |
T |

Parameters:

Name | Type | Description |
—— | —— | —— |
nameOrType | any | The unique name or class type of the object to retrieve. |

Returns: T

The object instance associated with the given name if found, otherwise undefined.

initialize

▸ initialize(obj: any): Promise<void>

Defined in src/ObjectFactory.ts:100

Scans the given object for any properties with the @Inject decorator and assigns the correct values.

Parameters:

Name | Type | Description |
—— | —— | —— |
obj | any | The object to initialize with injected defaults |

Returns: Promise<void>

newInstance

▸ newInstance<T>(type: any, name?: undefined | string, …args: any): Promise<T>

Defined in src/ObjectFactory.ts:267

Creates a new instance of the class specified with the provided unique name or type and constructor arguments. If an existing
object has already been created with the given name, that instance is returned, otherwise a new instance is created
using the provided arguments.

Type parameters:

Name |
—— |
T |

Parameters:

Name | Type | Description |
—— | —— | —— |
type | any | The fully qualified name or type of the class to instantiate. If a type is given it’s class name will be inferred via the constructor name. |
name? | undefined | string | The unique name to give the class instance. Set to undefined if you wish to force a new object is created. |
...args | any | The set of constructor arguments to use during construction |

Returns: Promise<T>

register

▸ register(clazz: any, fqn?: undefined | string): void

Defined in src/ObjectFactory.ts:325

Registers the given class type for the provided fully qualified name.

Parameters:

Name | Type | Description |
—— | —— | —— |
clazz | any | The class type to register. |
fqn? | undefined | string | The fully qualified name of the class to register. If not specified, the class name will be used. |

Returns: void

 @composer-js/service-core

Globals / OpenAPIRoute

Class: OpenAPIRoute

The OpenAPIController provides a default route to /openapi.json that exposes a provided OpenAPI
specification to requesting clients.

author Jean-Philippe Steinmetz

Hierarchy

	OpenAPIRoute

Index

Constructors

	constructor

Properties

	apiSpec

Methods

	get

	getJSON

Constructors

constructor

+ new OpenAPIRoute(apiSpec: any): OpenAPIRoute

Defined in src/routes/OpenAPIRoute.ts:17

Constructs a new OpenAPIController object with the specified defaults.

Parameters:

Name | Type | Description |
—— | —— | —— |
apiSpec | any | The OpenAPI specification object to serve. |

Returns: OpenAPIRoute

Properties

apiSpec

• Private apiSpec: any

Defined in src/routes/OpenAPIRoute.ts:17

The underlying OpenAPI specification.

Methods

get

▸ Privateget(): any

Defined in src/routes/OpenAPIRoute.ts:30

Returns: any

getJSON

▸ PrivategetJSON(): any

Defined in src/routes/OpenAPIRoute.ts:35

Returns: any

 @composer-js/service-core

Globals / Options

Class: Options

Describes the configuration options that can be used to initialize JWTStrategy.

author Jean-Philippe Steinmetz

Hierarchy

	Options

Callable

▸ Options(path?: undefined | string): (Anonymous function)

Defined in src/decorators/RouteDecorators.ts:161

Indicates that the decorated function handles incoming OPTIONS requests at the given sub-path.

Parameters:

Name | Type | Description |
—— | —— | —— |
path? | undefined | string | The sub-path that the route will handle requests for. |

Returns: (Anonymous function)

Index

Properties

	allowFailure

	cookieName

	cookieSecure

	headerKey

	headerScheme

	queryKey

Object literals

	config

Properties

allowFailure

• allowFailure: boolean = false

Defined in src/passportjs/JWTStrategy.ts:15

Set to true to allow a failure to be processed as a success, otherwise set to false. Default value is false.

cookieName

• cookieName: string = “jwt”

Defined in src/passportjs/JWTStrategy.ts:23

The name of the cookie to retrieve the token from when using cookie based authentication. Default value is jwt.

cookieSecure

• cookieSecure: boolean = false

Defined in src/passportjs/JWTStrategy.ts:25

The name of the secured cookie to retreive the token from when using cookie based authentication.

headerKey

• headerKey: string = “authorization”

Defined in src/passportjs/JWTStrategy.ts:19

The name of the header to look for when performing header based authentication. Default value is Authorization.

headerScheme

• headerScheme: string = “jwt”

Defined in src/passportjs/JWTStrategy.ts:21

The authorization scheme type when using header based authentication. Default value is jwt.

queryKey

• queryKey: string = “jwt_token”

Defined in src/passportjs/JWTStrategy.ts:27

The name of the requesty query parameter to retreive the token from when using query based authentication. Default value is jwt_token.

Object literals

config

▪ config: object

Defined in src/passportjs/JWTStrategy.ts:17

The configuration options to pass to the JWTUtils library during token verification.

Properties:

Name | Type | Value |
—— | —— | —— |
password | string | “” |

 @composer-js/service-core

Globals / RepoUtils

Class: RepoUtils

author Jean-Philippe Steinmetz

Hierarchy

	RepoUtils

Index

Methods

	preprocessBeforeSave

	preprocessBeforeUpdate

Methods

preprocessBeforeSave

▸ StaticpreprocessBeforeSave<T>(repo: Repository<T> | MongoRepository<T>, obj: T): Promise<T>

Defined in src/models/RepoUtils.ts:19

Verify object does not exist and update required fields for BaseEntity

Type parameters:

Name | Type |
—— | —— |
T | BaseEntity | SimpleEntity |

Parameters:

Name | Type | Description |
—— | —— | —— |
repo | Repository<T> | MongoRepository<T> | Repository used to verify no existing object |
obj | T | Object that exentds BaseEntity or SimpleEntity |

Returns: Promise<T>

preprocessBeforeUpdate

▸ StaticpreprocessBeforeUpdate<T>(repo: Repository<T> | MongoRepository<T>, obj: T): Promise<T>

Defined in src/models/RepoUtils.ts:49

Verify object does exist and update required fields

Type parameters:

Name | Type |
—— | —— |
T | BaseEntity | SimpleEntity |

Parameters:

Name | Type | Description |
—— | —— | —— |
repo | Repository<T> | MongoRepository<T> | Repository used to verify no existing object |
obj | T | Object that exentds BaseEntity or SimpleEntity |

Returns: Promise<T>

 @composer-js/service-core

Globals / RoutesScanner

Class: RoutesScanner

The RouteScanner is a utility class for loading all class files from a specified file path on the system that has
the @Route decorator. The resulting scan returns the list of all matching classes that can be instantiated and
registered to an Express application.

author Jean-Philippe Steinmetz

Hierarchy

	RoutesScanner

Index

Constructors

	constructor

Properties

	apiSpec

	classLoader

Methods

	implementsRoute

	scan

Constructors

constructor

+ new RoutesScanner(path: string): RoutesScanner

Defined in src/RoutesScanner.ts:18

Instantiates a new RoutesScanner with the given defaults.

Parameters:

Name | Type | Description |
—— | —— | —— |
path | string | The file path to use when searching for route classes. |

Returns: RoutesScanner

Properties

apiSpec

• Protected apiSpec: any = null

Defined in src/RoutesScanner.ts:18

The OpenAPI specification to reference.

classLoader

• Protected classLoader: ClassLoader

Defined in src/RoutesScanner.ts:16

The class loader used to search and load route classes.

Methods

implementsRoute

▸ PrivateimplementsRoute(clazz: any): boolean

Defined in src/RoutesScanner.ts:34

Determines if the provided class implements the @Route decorator.

Parameters:

Name | Type | Description |
—— | —— | —— |
clazz | any | The class to check. |

Returns: boolean

true if the class implements the @Route decorator, otherwise false.

scan

▸ scan(): Promise<Array<any>>

Defined in src/RoutesScanner.ts:43

Scans the file system for all classes that implement the @Route decorator and returns the list of all found
route class definitions.

Returns: Promise<Array<any>>

 @composer-js/service-core

Globals / RouteUtils

Class: RouteUtils

Provides a set of utilities for converting Route classes to ExpressJS middleware.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	RouteUtils

Index

Methods

	checkRequiredPerms

	checkRequiredRoles

	getFuncArray

	getRouteMethods

	registerRoute

	wrapMiddleware

Methods

checkRequiredPerms

▸ checkRequiredPerms(): RequestHandler

Defined in src/express/RouteUtils.ts:20

Creates an Express middleware function that verifies the incoming request is from a valid user with at least
one of the specified roles.

Returns: RequestHandler

checkRequiredRoles

▸ checkRequiredRoles(requiredRoles: string[]): RequestHandler

Defined in src/express/RouteUtils.ts:38

Creates an Express middleware function that verifies the incoming request is from a valid user with at least
one of the specified roles.

Parameters:

Name | Type | Description |
—— | —— | —— |
requiredRoles | string[] | The list of roles that the authenticated user must have. |

Returns: RequestHandler

getFuncArray

▸ getFuncArray(route: any, funcs: (Function | string)[], send?: boolean): RequestHandler[]

Defined in src/express/RouteUtils.ts:58

Converts the given array of string or Function objects to functions bound to the given route object.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
route | any | - | The route object that the list of functions is bound to. |
funcs | (Function | string)[] | - | The array of functions (or function names) to return. |
send | boolean | false | Set to true to have the last wrapped function send its payload to the client. |

Returns: RequestHandler[]

An array of Function objects mapping to the route object.

getRouteMethods

▸ getRouteMethods(route: any): Map<string, any>

Defined in src/express/RouteUtils.ts:81

Searches an route object for any functions that implement a @Method decorator.

Parameters:

Name | Type | Description |
—— | —— | —— |
route | any | The route object to search. |

Returns: Map<string, any>

The list of @Method decorated functions that were found.

registerRoute

▸ registerRoute(app: any, route: any): void

Defined in src/express/RouteUtils.ts:110

Registers the provided route object containing a set of decorated endpoints to the server.

Parameters:

Name | Type | Description |
—— | —— | —— |
app | any | The Express application to register the route to. |
route | any | The route object to register with Express. |

Returns: void

wrapMiddleware

▸ wrapMiddleware(obj: any, func: Function, send?: boolean): RequestHandler

Defined in src/express/RouteUtils.ts:205

Wraps the provided function with Express handling based on the function’s defined decorators.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
obj | any | - | The bound object whose middleware function will be wrapped. |
func | Function | - | - |
send | boolean | false | Set to true to have func’s result sent to the client. |

Returns: RequestHandler

 @composer-js/service-core

Globals / Server

Class: Server

Provides an HTTP server utilizing ExpressJS and PassportJS. The server automatically registers all routes, and
establishes database connections for all configured data stores. Additionally provides automatic authentication
handling using JSON Web Token (JWT) via PassportJS. When provided an OpenAPI specificatiion object the server will
also automatically serve this specification via the GET /openapi.json route.

Routes are defined by creating any class definition using the various decorators found in RouteDecorators and
saving these files in the routes subfolder. Upon server start, the routes folder is scanned for any class
that has been decorated with @Route and is automatically loaded and registered with Express. Similarly, if the
class is decorated with the @Model decorator the resulting route object will have the associated data model
definition object injected into the constructor.

By default all registered endpoints that do not explicit have an @Auth decorator have the JWT authentication
strategy applied. This allows users to be implicitly authenticated without requiring additional configuration.
Once authenticated, the provided request argument will have the user property available containing information
about the authenticated user. If the user property is undefined then no user has been authenticated or the
authentication attempt failed.

The following is an example of a simple route class.

import { DefaultBehaviors, RouteDecorators } from "@acceleratxr/service_core";
import { Get, Route } = RouteDecorators;

@Route("/hello")
class TestRoute extends ModelRoute {
constructor(model: any) {
super(model);
}

@Get()
count(req: any, res: any, next: Function): any {
return res.send("Hello World!");
}
}

export default TestRoute;

The following is an example of a route class that is bound to a data model providing basic CRUDS operations.

import { DefaultBehaviors, ModelDecorators, ModelRoute, RouteDecorators } from "@acceleratxr/service_core";
import { After, Before, Delete, Get, Post, Put, Route, Validate } = RouteDecorators;
import { Model } = ModelDecorators;
import { marshall } = DefaultBehaviors;

@Model("Item")
@Route("/items")
class ItemRoute extends ModelRoute {
constructor(model: any) {
super(model);
}

@Get()
@Before(super.count)
@After(marshall)
count(req: any, res: any, next: Function): any {
return next();
}

@Post()
@Before([super.create])
@After([this.prepare, marshall])
create(req: any, res: any, next: Function): any {
return next();
}

@Delete(":id")
@Before([super.delete])
delete(req: any, res: any, next: Function): any {
return next();
}

@Get()
@Before([super.findAll])
@After(this.prepareAndSend)
findAll(req: any, res: any, next: Function): any {
return next();
}

@Get(":id")
@Before([super.findById])
@After([this.prepare, marshall])
findById(req: any, res: any, next: Function): any {
return next();
}

@Put(":id")
@Before([super.update])
@After([this.prepare, marshall])
update(req: any, res: any, next: Function): any {
return next();
}
}

export default ItemRoute;

author Jean-Philippe Steinmetz

Hierarchy

	Server

Index

Constructors

	constructor

Properties

	aclRepo

	apiSpec

	app

	basePath

	config

	logger

	objectFactory

	port

	server

	wss

	metricCompletedRequests

	metricFailedRequests

	metricRequestPath

	metricRequestStatus

	metricRequestTime

	metricTotalRequests

Methods

	getApplication

	getServer

	injectProperties

	instantiateRoute

	isRunning

	restart

	start

	stop

Constructors

constructor

+ new Server(config: any, apiSpec?: any, basePath?: string, logger?: any, objectFactory?: ObjectFactory): Server

Defined in src/Server.ts:187

Creates a new instance of Server with the specified defaults.

Parameters:

Name | Type | Default value | Description |
—— | —— | —— | —— |
config | any | - | The nconf-compatible configuration object to initialize the server with. |
apiSpec? | any | - | The optional OpenAPI specification object to initialize the server with. |
basePath | string | “.” | The base file system path that models and routes will be searched from. |
logger | any | Logger() | The logging utility to use for outputing to console/file. |
objectFactory? | ObjectFactory | - | The object factory to use for automatic dependency injection (IOC). |

Returns: Server

Properties

aclRepo

• Protected Optional Readonly aclRepo: Repository<AccessControlListSQL> | MongoRepository<AccessControlListMongo>

Defined in src/Server.ts:138

The repository to the access control lists.

apiSpec

• Protected Optional Readonly apiSpec: any

Defined in src/Server.ts:140

The OpenAPI specification object to use to construct the server with.

app

• Protected app: Application

Defined in src/Server.ts:142

The underlying ExpressJS application that provides HTTP processing services.

basePath

• Protected Readonly basePath: string

Defined in src/Server.ts:144

The base file system path that will be searched for models and routes.

config

• Protected Optional Readonly config: any

Defined in src/Server.ts:146

The global object containing configuration information to use.

logger

• Protected Readonly logger: any

Defined in src/Server.ts:148

The logging utility to use when outputing to console/file.

objectFactory

• Protected Readonly objectFactory: ObjectFactory

Defined in src/Server.ts:150

The object factory to use when injecting dependencies.

port

• Readonly port: number

Defined in src/Server.ts:152

The port that the server is listening on.

server

• Protected Optional server: http.Server

Defined in src/Server.ts:154

The underlying HTTP server instance.

wss

• Protected Optional wss: WebSocketServer

Defined in src/Server.ts:156

The underlying WebSocket server instance.

metricCompletedRequests

▪ Static Protected metricCompletedRequests: Counter<string> = new prom.Counter({ name: “num_completed_requests”, help: “The total number of successfully completed requests.”, })

Defined in src/Server.ts:176

metricFailedRequests

▪ Static Protected metricFailedRequests: Counter<string> = new prom.Counter({ name: “num_failed_requests”, help: “The total number of failed requests.”, })

Defined in src/Server.ts:180

metricRequestPath

▪ Static Protected metricRequestPath: Histogram<string> = new prom.Histogram({ name: “request_path”, help: “A histogram of the number of handled requests by the requested path.”, labelNames: [“path”], })

Defined in src/Server.ts:161

metricRequestStatus

▪ Static Protected metricRequestStatus: Histogram<string> = new prom.Histogram({ name: “request_status”, help: “A histogram of the resulting status code of handled requests by the requested path.”, labelNames: [“path”, “code”], })

Defined in src/Server.ts:166

metricRequestTime

▪ Static Protected metricRequestTime: Summary<string> = new prom.Summary({ name: “request_time”, help: “A histogram of the response time of handled requests by the requested path.”, labelNames: [“path”], })

Defined in src/Server.ts:171

metricTotalRequests

▪ Static Protected metricTotalRequests: Counter<string> = new prom.Counter({ name: “num_total_requests”, help: “The total number of requests processed.”, })

Defined in src/Server.ts:184

Methods

getApplication

▸ getApplication(): Application

Defined in src/Server.ts:217

Returns the express app.

Returns: Application

getServer

▸ getServer(): Server | undefined

Defined in src/Server.ts:224

Returns the http server.

Returns: Server | undefined

injectProperties

▸ ProtectedinjectProperties(clazz: any, obj: any): Promise<void>

Defined in src/Server.ts:241

Injects all known dependencies into the given object based on the property decorators.

Parameters:

Name | Type | Description |
—— | —— | —— |
clazz | any | The class type of the object to inject. |
obj | any | The object whose dependencies will be injected. |

Returns: Promise<void>

instantiateRoute

▸ ProtectedinstantiateRoute(classDef: any): Promise<any>

Defined in src/Server.ts:262

Intantiates the given route class definition into an object that can be registered to Express.

Parameters:

Name | Type | Description |
—— | —— | —— |
classDef | any | The class definition of the route to instantiate. |

Returns: Promise<any>

A new instance of the provided class definition that implements the Route interface.

isRunning

▸ isRunning(): boolean

Defined in src/Server.ts:231

Returns true if the server is running, otherwise false.

Returns: boolean

restart

▸ restart(): Promise<void>

Defined in src/Server.ts:462

Restarts the HTTP listen server using the provided configuration and OpenAPI specification.

Returns: Promise<void>

start

▸ start(): Promise<void>

Defined in src/Server.ts:276

Starts an HTTP listen server based on the provided configuration and OpenAPI specification.

Returns: Promise<void>

stop

▸ stop(): Promise<void>

Defined in src/Server.ts:429

Stops the HTTP listen server.

Returns: Promise<void>

 @composer-js/service-core

Globals / SimpleMongoEntity

Class: SimpleMongoEntity

Provides a simple base class for all entity’s that will be persisted with TypeORM in a MongoDB database. Unlike
BaseMongoEntity this class does not provide optimistic locking or date created and modified tracking.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	BaseEntity

↳ SimpleMongoEntity

Index

Constructors

	constructor

Properties

	_id

	uid

Constructors

constructor

+ new SimpleMongoEntity(other?: any): SimpleMongoEntity

Overrides void

Defined in src/models/SimpleMongoEntity.ts:18

Parameters:

Name | Type |
—— | —— |
other? | any |

Returns: SimpleMongoEntity

Properties

_id

• Optional _id: ObjectID

Defined in src/models/SimpleMongoEntity.ts:18

The internal unique identifier used by MongoDB.

uid

• uid: string = uuid.v4()

Inherited from SimpleMongoEntity.uid

Defined in src/models/SimpleEntity.ts:21

The universally unique identifier of the entity.

 @composer-js/service-core

Globals / ACLAction

Enumeration: ACLAction

Describes the various permission actions that can be performed against an entity.

author Jean-Philippe Steinmetz info@acceleratxr.com

Index

Enumeration members

	CREATE

	DELETE

	FULL

	READ

	SPECIAL

	UPDATE

Enumeration members

CREATE

• CREATE: = “CREATE”

Defined in src/security/AccessControlList.ts:11

DELETE

• DELETE: = “DELETE”

Defined in src/security/AccessControlList.ts:12

FULL

• FULL: = “FULL”

Defined in src/security/AccessControlList.ts:13

READ

• READ: = “READ”

Defined in src/security/AccessControlList.ts:14

SPECIAL

• SPECIAL: = “SPECIAL”

Defined in src/security/AccessControlList.ts:15

UPDATE

• UPDATE: = “UPDATE”

Defined in src/security/AccessControlList.ts:16

 @composer-js/service-core

Globals / AccessControlList

Interface: AccessControlList

The access control list provides a generic interface for the storage of user and roles permissions. Each ACL object
represents the permission set for a single entity within the system. The entity is identified generically by its
universally unique identifier (uuid). Each entry in the ACL records the permissions available to a particular user
or role.

Each permission can be one of the following actions:

	Create - The user or role can create a new record or object.

	Read - The user or role can read the record or object.

	Update - The user or role can modify existing records or objects.

	Delete - The user or role can delete existing records or objects.

	Special - The user or role has special prilieges to edit the ACL permissions.

	Full - The user or role has total control over the record or object and supersedes any of the above.

For each of the above actions the user or role will be granted either an allow permission or a deny permission.
If an allow is granted, the user or role has permission to perform that action. If a deny is set, then the user
or role is denied that action. If no explicit allow or deny is set then the user or role will inherit the
permission from a parent role or ACL.

ACLs can be chained via single inheritance through the specification of the parentUid. This allows the ability to
create complex trees of permissions that can easily inherit control schemes to make the definition of permissions
easier.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	AccessControlList

Implemented by

	AccessControlListMongo

	AccessControlListSQL

Index

Properties

	dateCreated

	dateModified

	parent

	parentUid

	records

	uid

	version

Properties

dateCreated

• dateCreated: Date

Defined in src/security/AccessControlList.ts:106

The date and time that the entity was created.

dateModified

• dateModified: Date

Defined in src/security/AccessControlList.ts:111

The date and time that the entity was last modified.

parent

• Optional parent: AccessControlList

Defined in src/security/AccessControlList.ts:121

The parent access control list that this instance inherits permissions from.

parentUid

• Optional parentUid: undefined | string

Defined in src/security/AccessControlList.ts:127

The universally unique identifier of the parent AccessControlList that this object will inherit permissions
from.

records

• records: ACLRecord[]

Defined in src/security/AccessControlList.ts:132

The list of all permission records associated with this access control list.

uid

• uid: string

Defined in src/security/AccessControlList.ts:101

The universally unique identifier (uuid) of the entity that the access control list belongs to.

version

• version: number

Defined in src/security/AccessControlList.ts:116

The optimistic lock version.

 @composer-js/service-core

Globals / ACLRecord

Interface: ACLRecord

The ACLRecord interface describes a single permissions entry in an AccessControlList that grants or denies
a set of permissions to a single user or role.

Each permission can be one of the following actions:

	Create - The user or role can create a new record or object.

	Read - The user or role can read the record or object.

	Update - The user or role can modify existing records or objects.

	Delete - The user or role can delete existing records or objects.

	Special - The user or role has special prilieges to edit the ACL permissions.

	Full - The user or role has total control over the record or object and supersedes any of the above.

author Jean-Philippe Steinmetz info@acceleratxr.com

Hierarchy

	ACLRecord

Implemented by

	ACLRecordMongo

	ACLRecordSQL

Index

Properties

	create

	delete

	full

	read

	special

	update

	userOrRoleId

Properties

create

• create: boolean | null

Defined in src/security/AccessControlList.ts:42

Indicates that the user or role has permission to create new records of the entity.

delete

• delete: boolean | null

Defined in src/security/AccessControlList.ts:57

Indicates that the user or role has permission to delete existing records of the entity.

full

• full: boolean | null

Defined in src/security/AccessControlList.ts:69

Indicates that the user or role has total control over records of the entity. This supersedes all of the above
permissions.

read

• read: boolean | null

Defined in src/security/AccessControlList.ts:47

Indicates that the user or role has permission to read records of the entity.

special

• special: boolean | null

Defined in src/security/AccessControlList.ts:63

Indicates that the user or role has special permission over records of the entity. The exact meaning of this
may vary by service.

update

• update: boolean | null

Defined in src/security/AccessControlList.ts:52

Indicates that the user or role has permission to modify existing records of the entity.

userOrRoleId

• userOrRoleId: string

Defined in src/security/AccessControlList.ts:37

The unique identifier of the user or role that the record belongs to.

 @composer-js/service-core

Globals / Entity

Interface: Entity

Hierarchy

	Entity

Index

Properties

	datastore

Properties

datastore

• Optional datastore: any

Defined in src/ObjectFactory.ts:12

 @composer-js/service-core › Globals › Model

Interface: Model

Hierarchy

	Model

Index

Properties

	modelClass

Properties

Optional modelClass

• modelClass? : any

Defined in src/Server.ts:36

 @composer-js/service-core

Globals / RequestWS

Interface: RequestWS<P, ResBody, ReqBody, ReqQuery>

HTTP request type for handling WebSockets.

Type parameters

Name | Default |
—— | —— |
P | ParamsDictionary |
ResBody | any |
ReqBody | any |
ReqQuery | core.Query |

Hierarchy

	Request

↳ RequestWS

Implements

	ReadableStream

Index

Constructors

	constructor

Properties

	aborted

	accepted

	app

	baseUrl

	body

	complete

	connection

	cookies

	destroyed

	fresh

	headers

	host

	hostname

	httpVersion

	httpVersionMajor

	httpVersionMinor

	ip

	ips

	method

	next

	originalUrl

	params

	path

	protocol

	query

	rawHeaders

	rawTrailers

	readable

	readableEncoding

	readableEnded

	readableFlowing

	readableHighWaterMark

	readableLength

	readableObjectMode

	res

	route

	secure

	signedCookies

	socket

	stale

	statusCode

	statusMessage

	subdomains

	trailers

	url

	websocket

	wsHandled

	xhr

Methods

	[Symbol.asyncIterator]

	_destroy

	_read

	accepts

	acceptsCharsets

	acceptsEncodings

	acceptsLanguages

	addListener

	destroy

	emit

	eventNames

	get

	getMaxListeners

	header

	is

	isPaused

	listenerCount

	listeners

	off

	on

	once

	param

	pause

	pipe

	prependListener

	prependOnceListener

	push

	range

	rawListeners

	read

	removeAllListeners

	removeListener

	resume

	setEncoding

	setMaxListeners

	setTimeout

	unpipe

	unshift

	wrap

	from

Constructors

constructor

+ new RequestWS(socket: Socket): RequestWS

Inherited from RequestWS.constructor

Overrides void

Defined in node_modules/@types/node/http.d.ts:310

Parameters:

Name | Type |
—— | —— |
socket | Socket |

Returns: RequestWS

Properties

aborted

• aborted: boolean

Inherited from RequestWS.aborted

Defined in node_modules/@types/node/http.d.ts:313

accepted

• accepted: MediaType[]

Inherited from RequestWS.accepted

Defined in node_modules/@types/express-serve-static-core/index.d.ts:342

Return an array of Accepted media types
ordered from highest quality to lowest.

app

• app: Application

Inherited from RequestWS.app

Defined in node_modules/@types/express-serve-static-core/index.d.ts:485

baseUrl

• baseUrl: string

Inherited from RequestWS.baseUrl

Defined in node_modules/@types/express-serve-static-core/index.d.ts:483

body

• body: ReqBody

Inherited from RequestWS.body

Defined in node_modules/@types/express-serve-static-core/index.d.ts:464

complete

• complete: boolean

Inherited from RequestWS.complete

Defined in node_modules/@types/node/http.d.ts:317

connection

• connection: Socket

Inherited from RequestWS.connection

Defined in node_modules/@types/node/http.d.ts:321

deprecate Use socket instead.

cookies

• cookies: any

Inherited from RequestWS.cookies

Defined in node_modules/@types/express-serve-static-core/index.d.ts:467

destroyed

• destroyed: boolean

Inherited from RequestWS.destroyed

Defined in node_modules/@types/node/stream.d.ts:35

fresh

• fresh: boolean

Inherited from RequestWS.fresh

Defined in node_modules/@types/express-serve-static-core/index.d.ts:449

Check if the request is fresh, aka
Last-Modified and/or the ETag
still match.

headers

• headers: IncomingHttpHeaders

Inherited from RequestWS.headers

Defined in node_modules/@types/node/http.d.ts:323

host

• host: string

Inherited from RequestWS.host

Defined in node_modules/@types/express-serve-static-core/index.d.ts:442

deprecated Use hostname instead.

hostname

• hostname: string

Inherited from RequestWS.hostname

Defined in node_modules/@types/express-serve-static-core/index.d.ts:437

Parse the “Host” header field hostname.

httpVersion

• httpVersion: string

Inherited from RequestWS.httpVersion

Defined in node_modules/@types/node/http.d.ts:314

httpVersionMajor

• httpVersionMajor: number

Inherited from RequestWS.httpVersionMajor

Defined in node_modules/@types/node/http.d.ts:315

httpVersionMinor

• httpVersionMinor: number

Inherited from RequestWS.httpVersionMinor

Defined in node_modules/@types/node/http.d.ts:316

ip

• ip: string

Inherited from RequestWS.ip

Defined in node_modules/@types/express-serve-static-core/index.d.ts:404

Return the remote address, or when
“trust proxy” is true return
the upstream addr.

ips

• ips: string[]

Inherited from RequestWS.ips

Defined in node_modules/@types/express-serve-static-core/index.d.ts:414

When “trust proxy” is true, parse
the “X-Forwarded-For” ip address list.

For example if the value were “client, proxy1, proxy2”
you would receive the array ["client", "proxy1", "proxy2"]
where “proxy2” is the furthest down-stream.

method

• method: string

Inherited from RequestWS.method

Overrides void

Defined in node_modules/@types/express-serve-static-core/index.d.ts:469

next

• Optional next: NextFunction

Inherited from RequestWS.next

Defined in node_modules/@types/express-serve-static-core/index.d.ts:492

originalUrl

• originalUrl: string

Inherited from RequestWS.originalUrl

Defined in node_modules/@types/express-serve-static-core/index.d.ts:479

params

• params: P

Inherited from RequestWS.params

Defined in node_modules/@types/express-serve-static-core/index.d.ts:471

path

• path: string

Inherited from RequestWS.path

Defined in node_modules/@types/express-serve-static-core/index.d.ts:432

Short-hand for url.parse(req.url).pathname.

protocol

• protocol: string

Inherited from RequestWS.protocol

Defined in node_modules/@types/express-serve-static-core/index.d.ts:390

Return the protocol string “http” or “https”
when requested with TLS. When the “trust proxy”
setting is enabled the “X-Forwarded-Proto” header
field will be trusted. If you’re running behind
a reverse proxy that supplies https for you this
may be enabled.

query

• query: ReqQuery

Inherited from RequestWS.query

Defined in node_modules/@types/express-serve-static-core/index.d.ts:473

rawHeaders

• rawHeaders: string[]

Inherited from RequestWS.rawHeaders

Defined in node_modules/@types/node/http.d.ts:324

rawTrailers

• rawTrailers: string[]

Inherited from RequestWS.rawTrailers

Defined in node_modules/@types/node/http.d.ts:326

readable

• readable: boolean

Inherited from RequestWS.readable

Defined in node_modules/@types/node/stream.d.ts:28

readableEncoding

• Readonly readableEncoding: BufferEncoding | null

Inherited from RequestWS.readableEncoding

Defined in node_modules/@types/node/stream.d.ts:29

readableEnded

• Readonly readableEnded: boolean

Inherited from RequestWS.readableEnded

Defined in node_modules/@types/node/stream.d.ts:30

readableFlowing

• Readonly readableFlowing: boolean | null

Inherited from RequestWS.readableFlowing

Defined in node_modules/@types/node/stream.d.ts:31

readableHighWaterMark

• Readonly readableHighWaterMark: number

Inherited from RequestWS.readableHighWaterMark

Defined in node_modules/@types/node/stream.d.ts:32

readableLength

• Readonly readableLength: number

Inherited from RequestWS.readableLength

Defined in node_modules/@types/node/stream.d.ts:33

readableObjectMode

• Readonly readableObjectMode: boolean

Inherited from RequestWS.readableObjectMode

Defined in node_modules/@types/node/stream.d.ts:34

res

• Optional res: Response<ResBody>

Inherited from RequestWS.res

Defined in node_modules/@types/express-serve-static-core/index.d.ts:491

After middleware.init executed, Request will contain res and next properties
See: express/lib/middleware/init.js

route

• route: any

Inherited from RequestWS.route

Defined in node_modules/@types/express-serve-static-core/index.d.ts:475

secure

• secure: boolean

Inherited from RequestWS.secure

Defined in node_modules/@types/express-serve-static-core/index.d.ts:397

Short-hand for:

req.protocol == ‘https’

signedCookies

• signedCookies: any

Inherited from RequestWS.signedCookies

Defined in node_modules/@types/express-serve-static-core/index.d.ts:477

socket

• socket: Socket

Inherited from RequestWS.socket

Defined in node_modules/@types/node/http.d.ts:322

stale

• stale: boolean

Inherited from RequestWS.stale

Defined in node_modules/@types/express-serve-static-core/index.d.ts:456

Check if the request is stale, aka
“Last-Modified” and / or the “ETag” for the
resource has changed.

statusCode

• Optional statusCode: undefined | number

Inherited from RequestWS.statusCode

Defined in node_modules/@types/node/http.d.ts:339

Only valid for response obtained from http.ClientRequest.

statusMessage

• Optional statusMessage: undefined | string

Inherited from RequestWS.statusMessage

Defined in node_modules/@types/node/http.d.ts:343

Only valid for response obtained from http.ClientRequest.

subdomains

• subdomains: string[]

Inherited from RequestWS.subdomains

Defined in node_modules/@types/express-serve-static-core/index.d.ts:427

Return subdomains as an array.

Subdomains are the dot-separated parts of the host before the main domain of
the app. By default, the domain of the app is assumed to be the last two
parts of the host. This can be changed by setting “subdomain offset”.

For example, if the domain is “tobi.ferrets.example.com”:
If “subdomain offset” is not set, req.subdomains is ["ferrets", "tobi"].
If “subdomain offset” is 3, req.subdomains is ["tobi"].

trailers

• trailers: Dict<string>

Inherited from RequestWS.trailers

Defined in node_modules/@types/node/http.d.ts:325

url

• url: string

Inherited from RequestWS.url

Overrides void

Defined in node_modules/@types/express-serve-static-core/index.d.ts:481

websocket

• websocket: WebSocket | undefined

Defined in src/express/WebSocket.ts:15

The associated WebSocket connection with this request.

wsHandled

• wsHandled: boolean

Defined in src/express/WebSocket.ts:20

Indicates if the request is a websocket request that has been handled.

xhr

• xhr: boolean

Inherited from RequestWS.xhr

Defined in node_modules/@types/express-serve-static-core/index.d.ts:461

Check if the request was an XMLHttpRequest.

Methods

[Symbol.asyncIterator]

▸ [Symbol.asyncIterator](): AsyncIterableIterator<any>

Inherited from RequestWS.[Symbol.asyncIterator]

Defined in node_modules/@types/node/stream.d.ts:124

Returns: AsyncIterableIterator<any>

_destroy

▸ _destroy(error: Error | null, callback: (error?: Error | null) => void): void

Inherited from RequestWS._destroy

Defined in node_modules/@types/node/stream.d.ts:47

Parameters:

Name | Type |
—— | —— |
error | Error | null |
callback | (error?: Error | null) => void |

Returns: void

_read

▸ _read(size: number): void

Inherited from RequestWS._read

Defined in node_modules/@types/node/stream.d.ts:37

Parameters:

Name | Type |
—— | —— |
size | number |

Returns: void

accepts

▸ accepts(): string[]

Inherited from RequestWS.accepts

Defined in node_modules/@types/express-serve-static-core/index.d.ts:282

Check if the given type(s) is acceptable, returning
the best match when true, otherwise undefined, in which
case you should respond with 406 “Not Acceptable”.

The type value may be a single mime type string
such as “application/json”, the extension name
such as “json”, a comma-delimted list such as “json, html, text/plain”,
or an array ["json", "html", "text/plain"]. When a list
or array is given the best match, if any is returned.

Examples:

// Accept: text/html
req.accepts('html');
// => "html"

// Accept: text/*, application/json
req.accepts('html');
// => "html"
req.accepts('text/html');
// => "text/html"
req.accepts('json, text');
// => "json"
req.accepts('application/json');
// => "application/json"

// Accept: text/*, application/json
req.accepts('image/png');
req.accepts('png');
// => undefined

// Accept: text/*;q=.5, application/json
req.accepts(['html', 'json']);
req.accepts('html, json');
// => "json"

Returns: string[]

▸ accepts(type: string): string | false

Inherited from RequestWS.accepts

Defined in node_modules/@types/express-serve-static-core/index.d.ts:283

Parameters:

Name | Type |
—— | —— |
type | string |

Returns: string | false

▸ accepts(type: string[]): string | false

Inherited from RequestWS.accepts

Defined in node_modules/@types/express-serve-static-core/index.d.ts:284

Parameters:

Name | Type |
—— | —— |
type | string[] |

Returns: string | false

▸ accepts(…type: string[]): string | false

Inherited from RequestWS.accepts

Defined in node_modules/@types/express-serve-static-core/index.d.ts:285

Parameters:

Name | Type |
—— | —— |
...type | string[] |

Returns: string | false

acceptsCharsets

▸ acceptsCharsets(): string[]

Inherited from RequestWS.acceptsCharsets

Defined in node_modules/@types/express-serve-static-core/index.d.ts:294

Returns the first accepted charset of the specified character sets,
based on the request’s Accept-Charset HTTP header field.
If none of the specified charsets is accepted, returns false.

For more information, or if you have issues or concerns, see accepts.

Returns: string[]

▸ acceptsCharsets(charset: string): string | false

Inherited from RequestWS.acceptsCharsets

Defined in node_modules/@types/express-serve-static-core/index.d.ts:295

Parameters:

Name | Type |
—— | —— |
charset | string |

Returns: string | false

▸ acceptsCharsets(charset: string[]): string | false

Inherited from RequestWS.acceptsCharsets

Defined in node_modules/@types/express-serve-static-core/index.d.ts:296

Parameters:

Name | Type |
—— | —— |
charset | string[] |

Returns: string | false

▸ acceptsCharsets(…charset: string[]): string | false

Inherited from RequestWS.acceptsCharsets

Defined in node_modules/@types/express-serve-static-core/index.d.ts:297

Parameters:

Name | Type |
—— | —— |
...charset | string[] |

Returns: string | false

acceptsEncodings

▸ acceptsEncodings(): string[]

Inherited from RequestWS.acceptsEncodings

Defined in node_modules/@types/express-serve-static-core/index.d.ts:306

Returns the first accepted encoding of the specified encodings,
based on the request’s Accept-Encoding HTTP header field.
If none of the specified encodings is accepted, returns false.

For more information, or if you have issues or concerns, see accepts.

Returns: string[]

▸ acceptsEncodings(encoding: string): string | false

Inherited from RequestWS.acceptsEncodings

Defined in node_modules/@types/express-serve-static-core/index.d.ts:307

Parameters:

Name | Type |
—— | —— |
encoding | string |

Returns: string | false

▸ acceptsEncodings(encoding: string[]): string | false

Inherited from RequestWS.acceptsEncodings

Defined in node_modules/@types/express-serve-static-core/index.d.ts:308

Parameters:

Name | Type |
—— | —— |
encoding | string[] |

Returns: string | false

▸ acceptsEncodings(…encoding: string[]): string | false

Inherited from RequestWS.acceptsEncodings

Defined in node_modules/@types/express-serve-static-core/index.d.ts:309

Parameters:

Name | Type |
—— | —— |
...encoding | string[] |

Returns: string | false

acceptsLanguages

▸ acceptsLanguages(): string[]

Inherited from RequestWS.acceptsLanguages

Defined in node_modules/@types/express-serve-static-core/index.d.ts:318

Returns the first accepted language of the specified languages,
based on the request’s Accept-Language HTTP header field.
If none of the specified languages is accepted, returns false.

For more information, or if you have issues or concerns, see accepts.

Returns: string[]

▸ acceptsLanguages(lang: string): string | false

Inherited from RequestWS.acceptsLanguages

Defined in node_modules/@types/express-serve-static-core/index.d.ts:319

Parameters:

Name | Type |
—— | —— |
lang | string |

Returns: string | false

▸ acceptsLanguages(lang: string[]): string | false

Inherited from RequestWS.acceptsLanguages

Defined in node_modules/@types/express-serve-static-core/index.d.ts:320

Parameters:

Name | Type |
—— | —— |
lang | string[] |

Returns: string | false

▸ acceptsLanguages(…lang: string[]): string | false

Inherited from RequestWS.acceptsLanguages

Defined in node_modules/@types/express-serve-static-core/index.d.ts:321

Parameters:

Name | Type |
—— | —— |
...lang | string[] |

Returns: string | false

addListener

▸ addListener(event: “close”, listener: () => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:61

Event emitter
The defined events on documents including:

	close

	data

	end

	error

	pause

	readable

	resume

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ addListener(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:62

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ addListener(event: “end”, listener: () => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:63

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ addListener(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:64

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ addListener(event: “pause”, listener: () => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:65

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ addListener(event: “readable”, listener: () => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:66

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ addListener(event: “resume”, listener: () => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:67

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ addListener(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.addListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:68

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

destroy

▸ destroy(error?: Error): void

Inherited from RequestWS.destroy

Overrides void

Defined in node_modules/@types/node/http.d.ts:344

Parameters:

Name | Type |
—— | —— |
error? | Error |

Returns: void

emit

▸ emit(event: “close”): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:70

Parameters:

Name | Type |
—— | —— |
event | “close” |

Returns: boolean

▸ emit(event: “data”, chunk: any): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:71

Parameters:

Name | Type |
—— | —— |
event | “data” |
chunk | any |

Returns: boolean

▸ emit(event: “end”): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:72

Parameters:

Name | Type |
—— | —— |
event | “end” |

Returns: boolean

▸ emit(event: “error”, err: Error): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:73

Parameters:

Name | Type |
—— | —— |
event | “error” |
err | Error |

Returns: boolean

▸ emit(event: “pause”): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:74

Parameters:

Name | Type |
—— | —— |
event | “pause” |

Returns: boolean

▸ emit(event: “readable”): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:75

Parameters:

Name | Type |
—— | —— |
event | “readable” |

Returns: boolean

▸ emit(event: “resume”): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:76

Parameters:

Name | Type |
—— | —— |
event | “resume” |

Returns: boolean

▸ emit(event: string | symbol, …args: any[]): boolean

Inherited from RequestWS.emit

Overrides void

Defined in node_modules/@types/node/stream.d.ts:77

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
...args | any[] |

Returns: boolean

eventNames

▸ eventNames(): Array<string | symbol>

Inherited from RequestWS.eventNames

Defined in node_modules/@types/node/events.d.ts:77

Returns: Array<string | symbol>

get

▸ get(name: “set-cookie”): string[] | undefined

Inherited from RequestWS.get

Defined in node_modules/@types/express-serve-static-core/index.d.ts:239

Return request header.

The Referrer header field is special-cased,
both Referrer and Referer are interchangeable.

Examples:

req.get('Content-Type');
// => "text/plain"

req.get('content-type');
// => "text/plain"

req.get('Something');
// => undefined

Aliased as req.header().

Parameters:

Name | Type |
—— | —— |
name | “set-cookie” |

Returns: string[] | undefined

▸ get(name: string): string | undefined

Inherited from RequestWS.get

Defined in node_modules/@types/express-serve-static-core/index.d.ts:240

Parameters:

Name | Type |
—— | —— |
name | string |

Returns: string | undefined

getMaxListeners

▸ getMaxListeners(): number

Inherited from RequestWS.getMaxListeners

Defined in node_modules/@types/node/events.d.ts:69

Returns: number

header

▸ header(name: “set-cookie”): string[] | undefined

Inherited from RequestWS.header

Defined in node_modules/@types/express-serve-static-core/index.d.ts:242

Parameters:

Name | Type |
—— | —— |
name | “set-cookie” |

Returns: string[] | undefined

▸ header(name: string): string | undefined

Inherited from RequestWS.header

Defined in node_modules/@types/express-serve-static-core/index.d.ts:243

Parameters:

Name | Type |
—— | —— |
name | string |

Returns: string | undefined

is

▸ is(type: string | string[]): string | false | null

Inherited from RequestWS.is

Defined in node_modules/@types/express-serve-static-core/index.d.ts:380

Check if the incoming request contains the “Content-Type”
header field, and it contains the give mime type.

Examples:

 // With Content-Type: text/html; charset=utf-8
 req.is('html');
 req.is('text/html');
 req.is('text/*');
 // => true

 // When Content-Type is application/json
 req.is('json');
 req.is('application/json');
 req.is('application/*');
 // => true

 req.is('html');
 // => false

Parameters:

Name | Type |
—— | —— |
type | string | string[] |

Returns: string | false | null

isPaused

▸ isPaused(): boolean

Inherited from RequestWS.isPaused

Defined in node_modules/@types/node/stream.d.ts:42

Returns: boolean

listenerCount

▸ listenerCount(event: string | symbol): number

Inherited from RequestWS.listenerCount

Defined in node_modules/@types/node/events.d.ts:73

Parameters:

Name | Type |
—— | —— |
event | string | symbol |

Returns: number

listeners

▸ listeners(event: string | symbol): Function[]

Inherited from RequestWS.listeners

Defined in node_modules/@types/node/events.d.ts:70

Parameters:

Name | Type |
—— | —— |
event | string | symbol |

Returns: Function[]

off

▸ off(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.off

Defined in node_modules/@types/node/events.d.ts:66

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

on

▸ on(event: “close”, listener: () => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:79

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ on(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:80

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ on(event: “end”, listener: () => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:81

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ on(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:82

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ on(event: “pause”, listener: () => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:83

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ on(event: “readable”, listener: () => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:84

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ on(event: “resume”, listener: () => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:85

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ on(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.on

Overrides void

Defined in node_modules/@types/node/stream.d.ts:86

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

once

▸ once(event: “close”, listener: () => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:88

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ once(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:89

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ once(event: “end”, listener: () => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:90

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ once(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:91

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ once(event: “pause”, listener: () => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:92

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ once(event: “readable”, listener: () => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:93

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ once(event: “resume”, listener: () => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:94

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ once(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.once

Overrides void

Defined in node_modules/@types/node/stream.d.ts:95

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

param

▸ param(name: string, defaultValue?: any): string

Inherited from RequestWS.param

Defined in node_modules/@types/express-serve-static-core/index.d.ts:357

deprecated since 4.11 Use either req.params, req.body or req.query, as applicable.

Return the value of param name when present or defaultValue.

	Checks route placeholders, ex: /user/:id

	Checks body params, ex: id=12, {“id”:12}

	Checks query string params, ex: ?id=12

To utilize request bodies, req.body
should be an object. This can be done by using
the connect.bodyParser() middleware.

Parameters:

Name | Type |
—— | —— |
name | string |
defaultValue? | any |

Returns: string

pause

▸ pause(): this

Inherited from RequestWS.pause

Defined in node_modules/@types/node/stream.d.ts:40

Returns: this

pipe

▸ pipe<T>(destination: T, options?: undefined | { end?: undefined | false | true }): T

Inherited from RequestWS.pipe

Defined in node_modules/@types/node/stream.d.ts:5

Type parameters:

Name | Type |
—— | —— |
T | WritableStream |

Parameters:

Name | Type |
—— | —— |
destination | T |
options? | undefined | { end?: undefined | false | true } |

Returns: T

prependListener

▸ prependListener(event: “close”, listener: () => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:97

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ prependListener(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:98

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ prependListener(event: “end”, listener: () => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:99

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ prependListener(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:100

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ prependListener(event: “pause”, listener: () => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:101

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ prependListener(event: “readable”, listener: () => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:102

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ prependListener(event: “resume”, listener: () => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:103

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ prependListener(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.prependListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:104

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

prependOnceListener

▸ prependOnceListener(event: “close”, listener: () => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:106

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ prependOnceListener(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:107

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ prependOnceListener(event: “end”, listener: () => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:108

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ prependOnceListener(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:109

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ prependOnceListener(event: “pause”, listener: () => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:110

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ prependOnceListener(event: “readable”, listener: () => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:111

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ prependOnceListener(event: “resume”, listener: () => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:112

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ prependOnceListener(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.prependOnceListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:113

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

push

▸ push(chunk: any, encoding?: BufferEncoding): boolean

Inherited from RequestWS.push

Defined in node_modules/@types/node/stream.d.ts:46

Parameters:

Name | Type |
—— | —— |
chunk | any |
encoding? | BufferEncoding |

Returns: boolean

range

▸ range(size: number, options?: RangeParserOptions): RangeParserRanges | RangeParserResult | undefined

Inherited from RequestWS.range

Defined in node_modules/@types/express-serve-static-core/index.d.ts:336

Parse Range header field, capping to the given size.

Unspecified ranges such as “0-“ require knowledge of your resource length. In
the case of a byte range this is of course the total number of bytes.
If the Range header field is not given undefined is returned.
If the Range header field is given, return value is a result of range-parser.
See more ./types/range-parser/index.d.ts

NOTE: remember that ranges are inclusive, so for example “Range: users=0-3”
should respond with 4 users when available, not 3.

Parameters:

Name | Type |
—— | —— |
size | number |
options? | RangeParserOptions |

Returns: RangeParserRanges | RangeParserResult | undefined

rawListeners

▸ rawListeners(event: string | symbol): Function[]

Inherited from RequestWS.rawListeners

Defined in node_modules/@types/node/events.d.ts:71

Parameters:

Name | Type |
—— | —— |
event | string | symbol |

Returns: Function[]

read

▸ read(size?: undefined | number): any

Inherited from RequestWS.read

Defined in node_modules/@types/node/stream.d.ts:38

Parameters:

Name | Type |
—— | —— |
size? | undefined | number |

Returns: any

removeAllListeners

▸ removeAllListeners(event?: string | symbol): this

Inherited from RequestWS.removeAllListeners

Defined in node_modules/@types/node/events.d.ts:67

Parameters:

Name | Type |
—— | —— |
event? | string | symbol |

Returns: this

removeListener

▸ removeListener(event: “close”, listener: () => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:115

Parameters:

Name | Type |
—— | —— |
event | “close” |
listener | () => void |

Returns: this

▸ removeListener(event: “data”, listener: (chunk: any) => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:116

Parameters:

Name | Type |
—— | —— |
event | “data” |
listener | (chunk: any) => void |

Returns: this

▸ removeListener(event: “end”, listener: () => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:117

Parameters:

Name | Type |
—— | —— |
event | “end” |
listener | () => void |

Returns: this

▸ removeListener(event: “error”, listener: (err: Error) => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:118

Parameters:

Name | Type |
—— | —— |
event | “error” |
listener | (err: Error) => void |

Returns: this

▸ removeListener(event: “pause”, listener: () => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:119

Parameters:

Name | Type |
—— | —— |
event | “pause” |
listener | () => void |

Returns: this

▸ removeListener(event: “readable”, listener: () => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:120

Parameters:

Name | Type |
—— | —— |
event | “readable” |
listener | () => void |

Returns: this

▸ removeListener(event: “resume”, listener: () => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:121

Parameters:

Name | Type |
—— | —— |
event | “resume” |
listener | () => void |

Returns: this

▸ removeListener(event: string | symbol, listener: (…args: any[]) => void): this

Inherited from RequestWS.removeListener

Overrides void

Defined in node_modules/@types/node/stream.d.ts:122

Parameters:

Name | Type |
—— | —— |
event | string | symbol |
listener | (…args: any[]) => void |

Returns: this

resume

▸ resume(): this

Inherited from RequestWS.resume

Defined in node_modules/@types/node/stream.d.ts:41

Returns: this

setEncoding

▸ setEncoding(encoding: BufferEncoding): this

Inherited from RequestWS.setEncoding

Defined in node_modules/@types/node/stream.d.ts:39

Parameters:

Name | Type |
—— | —— |
encoding | BufferEncoding |

Returns: this

setMaxListeners

▸ setMaxListeners(n: number): this

Inherited from RequestWS.setMaxListeners

Defined in node_modules/@types/node/events.d.ts:68

Parameters:

Name | Type |
—— | —— |
n | number |

Returns: this

setTimeout

▸ setTimeout(msecs: number, callback?: undefined | () => void): this

Inherited from RequestWS.setTimeout

Defined in node_modules/@types/node/http.d.ts:327

Parameters:

Name | Type |
—— | —— |
msecs | number |
callback? | undefined | () => void |

Returns: this

unpipe

▸ unpipe(destination?: NodeJS.WritableStream): this

Inherited from RequestWS.unpipe

Defined in node_modules/@types/node/stream.d.ts:43

Parameters:

Name | Type |
—— | —— |
destination? | NodeJS.WritableStream |

Returns: this

unshift

▸ unshift(chunk: any, encoding?: BufferEncoding): void

Inherited from RequestWS.unshift

Defined in node_modules/@types/node/stream.d.ts:44

Parameters:

Name | Type |
—— | —— |
chunk | any |
encoding? | BufferEncoding |

Returns: void

wrap

▸ wrap(oldStream: ReadableStream): this

Inherited from RequestWS.wrap

Defined in node_modules/@types/node/stream.d.ts:45

Parameters:

Name | Type |
—— | —— |
oldStream | ReadableStream |

Returns: this

from

▸ Staticfrom(iterable: Iterable<any> | AsyncIterable<any>, options?: ReadableOptions): Readable

Inherited from RequestWS.from

Defined in node_modules/@types/node/stream.d.ts:26

A utility method for creating Readable Streams out of iterators.

Parameters:

Name | Type |
—— | —— |
iterable | Iterable<any> | AsyncIterable<any> |
options? | ReadableOptions |

Returns: Readable

Authorization

Users

When a user has successfully authenticated with a Composer service, a user object, can be passed into each route
handler function using the @AuthUser decorator. The class type of the value is JWTUser. This object contains
useful information about the given user such as their unique identifier (uid) and their associated roles.

The user object may optionally contain other additional information such as the email address, name, etc. The inclusion
of this information is dependent upon the service that generated the JWT token containing the user data in the first
place. Typically, it is not necessary to have information other than the user’s uid and set of roles.

Roles

Roles are mechanism in Composer that allows for users in to inherit permissions of a larger group. This is useful when
describing large organizations of users with a variety of different privileges and permissions.

A single default group is always assumed in every Composer project, admin. The admin is considered to be
a Trusted Role.

Trusted Roles

A Trusted Role in Composer is a special role, as defined in the config.ts file, which has complete and total
permission to perform any action with the service. It is a superuser and should be treated as such. Each service
can configure one or more of these trusted roles. When a trusted role is set, it supersedes any other authorization
mechanism, including Access Control Lists.

By default, all Composer projects are generated with a single trusted role named admin. Therefore, any
authenticated user with admin listed in their roles list will have superuser privileges.

Access Control Lists

Access Control Lists are the primary mechanism for managing user rights and access in Composer server projects. With
ACLs it is possible to provide detailed levels of control on a per URL, per data type and per object record basis.

Each ACL is associated by a uid. The uid can be a real UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier],
an arbitrary name (such as the class name), or a URL pattern (e.g. /pets). The ACL also contains a list of
ACLRecord objects. These records contain the permission information for a single individual or role for the
ACL object in question.

In Composer, ACLs are an ALWAYS ALLOW based system. Meaning, if no explicit ACL or record is defined for a given
user or role, it is assumed that the action is allowed to be performed. Likewise, if a ACL record exists for a given
user or role but the particular action being tested is defined with a null value, then always allow is assumed
and the user will be granted permission to perform the action.

There are several actions definable for a single user or role in an ACL. They are:

	Action

	Description

	CREATE

	The user or role can create a new resource.

	READ

	The user or role can read the resource.

	UPDATE

	The user or role can modify existing resource.

	DELETE

	The user or role can delete existing resource.

	SPECIAL

	The user or role has special prilieges to edit the ACL permissions.

	FULL

	The user or role has total control over the resource and supersedes any of the above.

Inheritance

It is possible for an ACL to inherit the permissions from another by specifying a parentUid. When a
parentUid is specified, the system will first scan all ACL records for a matching entry for a given
user or role. If none can be found, it searches the parent’s list of ACL records and so on. There are no
limits to the levels of parents that can be described in a given tree of ACLs. The system will stop searching
once it reaches a parent with a null value for the parentUid.

Per URL

Composer supports the ability to define ACLs on a per URL pattern basis. When creating a URL based ACL the
uid specified must be a valid URL regular expression pattern.

Example

/\/pets.*/

When a request arrives for any URL that matches a given URL it will be verified against the defined ACL.

ACL actions map directly to HTTP methods as follows:

	HTTP Method | ACL Action

	POST | CREATE

	GET | READ

	PUT | UPDATE

	DELETE | DELETE

If there exists more than one ACL that matches to a given URL pattern, the server will select the longest
pattern to use during authorization.

Example

Given two ACLs for the following URL patterns:

	/\/pets.*/

	/\/pets\/breeds.*/

When a request arrives for the path /pets/breeds/collie the second ACL will be selected (/\/pets\/breeds.*/).

Should a request arrive for the path /pets/scotty then the first ACL will be selected (/\/pets.*/).

Per Data Type

Often it is desirable to control access to individual data types. Composer provides a built-in mechanism for handling
this with the ModelRoute abstract base class by defining the function getDefaultACL. As a matter of
convenience, the Composer code generator will automatically create a default implementation for your data types in
which all users have read-only access to the resource. This is easily customized by adding new records and adjusting
the pre-defined ones that are created.

The built-in route handler functions provided with ModelRoute also make use of this default ACL. See the Built-ins
page for more information.

Per Object

Finally, it is possible to define Access Control Lists per object record. Once again, the ModelRoute abstract base
class provides built-in behavior that automatically creates a new ACL for each object that is created with doCreate
and is validated against for each built-in that operates on a single record.

Caching

Composer offers built-in 2nd level caching for all database operations using redis. By default the feature is
disabled and must be enabled in the configuration (see datastores.cache in the Configuration page).

In order for a data model to be cached it must use the @Cache decorator in the class definition.

1@Entity()
2@Cache()
3@Unique(["uid", "id"])
4export default class Order extends BaseMongoEntity {
5}

The @Cache decorator takes an optional ttl argument that indicates the time, in seconds, that an object will
remain in the cache. The default value is 30 seconds.

Query Caching

Route handlers that extend from ModelRoute and use the doCount and doFindAll functions leverage query
caching. These functions will cache the results of any query that has been requested by the service for a configured
duration of time and then rebuild the cached results once the time has expired.

Object Caching

For route handlers that extend ModelRoute and use the doUpdate and doFindById functions the object cache
is used. Any time an object is initially access (via create, find or other) it will be placed in the cache for faster
subsequent retrieval.

Configuration

Configuration in Composer projects utilizes the nconf [https://www.npmjs.com/package/nconf] configuration system
with all settings being stored in the config.ts file. This makes it easy to provide configuration to the server
that is easy to override both at the command line level and via environment variables.

Here is a typical configuration file for a Composer project.

 1const packageInfo = require("../package.json");
 2 const conf = require("nconf")
 3 .argv()
 4 .env({
 5 separator: "__",
 6 parseValues: true,
 7 });
 8
 9 conf.defaults({
10 service_name: packageInfo.name, // The name of the service
11 version: packageInfo.version, // The published version string
12 cookie_secret: "COOKIE_SECRET",
13 cors: {
14 origin: ["http://localhost:3000"],
15 },
16 datastores: { // Database configuration
17 acl: { // Database for Access Control Lists
18 type: "mongodb",
19 url: "mongodb://localhost",
20 database: "acl",
21 useNewUrlParser: true,
22 useUnifiedTopology: true,
23 synchronize: true,
24 },
25 // Uncomment the following to enable 2nd level caching support.
26 // Only entity models with the @Cache decorator will be cached.
27 //cache: {
28 // type: "redis",
29 // url: "redis://localhost:6379",
30 //},
31 mongodb: {
32 type: "mongodb",
33 url: "mongodb://localhost",
34 database: "",
35 useNewUrlParser: true,
36 useUnifiedTopology: true,
37 synchronize: true,
38 },
39 },
40 // Specifies the role names that are considered to be trusted with administrative privileges.
41 trusted_roles: ["admin"],
42 // Settings pertaining to the signing and verification of authentication tokens
43 auth: {
44 // The default PassportJS authentication strategy to use
45 strategy: "JWTStrategy",
46 // The password to be used when verifying authentication tokens
47 password: "MyPasswordIsSecure",
48 options: {
49 //"algorithm": "HS256",
50 expiresIn: "7 days",
51 audience: "mydomain.com",
52 issuer: "api.mydomain.com",
53 },
54 },
55 jobs: {
56 defaultSchedule: "* * * * * *",
57 MetricsCollector: {
58 schedule: "*/5 * * * * *",
59 },
60 },
61 session: {
62 secret: "SESSION_SECRET",
63 },
64 });
65
66 export default conf;

Datastores

Of particular importance is the datastores property of the configuration. This takes a map of TypeORM compatible
database configurations. Additionally, a type propertly must be set for each one to indicate the type of database
to connect to. It is possible to specify as many connections as is desired.

Any database supported by TypeORM is allowed, including some of these popular ones.

	Type

	Database

	mongodb

	MongoDB

	postgres

	PostgreSQL

	mysql

	MySQL

	sqlite

	SQLite

	redis

	REDIS

Note the last entry in the list, redis. redis is not directly supported by TypeORM but is supported by
Composer. Redis support in Composer does not offer any ORM support and instead gives direct access to a redis
client connection.

Trusted Roles

The trusted_roles configuration property indicates which authenticated role names will be given superuser
privileges in the service. See Authorization for more details.

Auth

The auth configuration property controls what primary authentication strategy is used for all client requests. By
default this is JWTStrategy and should not be changed. It is important to change the password and options
properties before you launch your service into production.

Jobs

The jobs section describes the configuration for the various background services that are desired to be run with
the server. See Background Services for more information.

Dependency Injection (IoC)

Composer includes a dependency injection system for implementing Inversion of Control (IOC).
This is accomplished through the use of the ObjectFactory which is constructed at application
startup.

The ObjectFactory class is used interally by the Server to automatically construct and initialize
all route handlers and background jobs, including their dependencies. It is also capable of managing
the object lifecycle including initialization and destruction.

This system uses decorators. Decorators are used to identify individual class members that should be injected
including what type of object they are as well as functions that contribute to the management of the object’s
lifecycle. There are also a few special decorators used to inject common variable types such as application
configuration variables or the application logging utility.

Object Lifecycle

All objects constructed by the ObjectFactory are given a unique identifying instance name. This can be
specified at object construction using the newInstance function or via the @Inject decorator. By default,
if any object is constructed without a name specified, the system will name the object default.

To construct a new object using the ObjectFactory simply use the newInstance function as in the following example.

 1class MyClass {
 2 private var1: any;
 3 private var2: any;
 4 privaet var3: any;
 5
 6 constructor(arg1: any, arg2: any, arg3: any) {
 7 this.var1 = arg1;
 8 this.var2 = arg2;
 9 this.var3 = arg3;
10 }
11
12 @Init
13 private init(): void {
14 // This function is called after instantiation and once all variables have been injected
15 }
16
17 @Destroy
18 private destroy(): void {
19 // This function is called when the object is about to be destroyed.
20 }
21}
22
23const myObject: MyClass = objectFactory.newInstance<MyClass>(MyClass, "default", arg1, arg2, arg3);

In the above example we instantiate a new instance of class MyClass and provide the constructor the arguments arg1, arg2, and arg3.
Two functions are also defined; the init and destroy functions. These functions are used to notify the object that construction is
complete and that all dependencies have been injected. The destroy function is called when the system is about to destroy the object
instance and should perform any last minute cleanup. If either function returns a Promise the system will wait until the completion
of the async operation before continuing.

Dependency Injection

Dependency injection is performed by decorating member variables of a class with the @Inject decorator or one of the other
specialized decorators as shown in the example below.

 1class MyClass {
 2 @Config()
 3 private config?: any;
 4
 5 @Config("path:to:flag")
 6 private myFlag: boolean = false;
 7
 8 @Logger
 9 private logger?: any;
10
11 @Inject(MySecondClass)
12 private mySecond?: MySecondClass;
13
14 @Inject(MySecondClass, "custom", 1, 2, 3)
15 private mySecond?: MySecondClass;
16
17 constructor(arg1: any, arg2: any, arg3: any) {
18 this.var1 = arg1;
19 this.var2 = arg2;
20 this.var3 = arg3;
21 }
22}

In the above example several concepts are demonstrated. The first is the use of the @Config decorator. This decorator
will inject the application’s global configuration object (line 2) or a specific variable of the global configuration
object when a path is given (line 5).

Next the @Logger decorator is used on line 8. This tells the system to inject the application’s logging utility.

The last two varibles use the standard @Inject decorator to inject a variable by class type and name. In line 11, only
the class type is specified which results in the system looking up the object with the name default for that class type.
When no existing instance for the name is found it is automatically constructed and injected. Since no arguments are
specified it is expected that the MySecondClass does not require any arguments in it’s constructor. The injection of
line 13 on the other hand specifies both a name, custom, and a set of constructor arguments. The system will first
look up and existing instance for the given name and if not found instantiate the object with the given constructor
arguments (e.g. 1, 2, 3).

General Decorators

Below is the list of decorators available to the use for general purpose dependencies. They are exposed via the
ObjectDecorators interface import.

1import { ObjectDecorators } from "@composer-js/service-core";
2const { Config, Destroy, Init, Inject, Logger } = ObjectDecorators;

@Init

The @Init decorator is used to indicate the function that will be called immediately after an object has been
instantiated and all dependencies injected.

 1 class MyClass {
 2 @Init
 3 private init(): void {
 4 // This function is called after instantiation and once all variables have been injected
 5 }
 6
 7 @Destroy
 8 private destroy(): void {
 9 // This function is called when the object is about to be destroyed.
10 }
11}

@Destroy

The @Destroy decorator is used to indicate the function that will perform any cleanup before the object is destroyed.

 1 class MyClass {
 2 private var1: any;
 3 private var2: any;
 4 privaet var3: any;
 5
 6 constructor(arg1: any, arg2: any, arg3: any) {
 7 this.var1 = arg1;
 8 this.var2 = arg2;
 9 this.var3 = arg3;
10 }
11
12 @Init
13 private init(): void {
14 // This function is called after instantiation and once all variables have been injected
15 }
16
17 @Destroy
18 private destroy(): void {
19 // This function is called when the object is about to be destroyed.
20 }
21}

@Inject

The @Inject decorator tells the system to automatically inject the object instance of the given type and name. If
no existing object with that name and type is found it is automatically constructed using the provided constructor
arguments.

 1 class MyClass {
 2 @Inject(MySecondClass)
 3 private mySecond?: MySecondClass;
 4
 5 @Inject(MySecondClass, "custom", 1, 2, 3)
 6 private mySecond?: MySecondClass;
 7
 8 constructor(arg1: any, arg2: any, arg3: any) {
 9 this.var1 = arg1;
10 this.var2 = arg2;
11 this.var3 = arg3;
12 }
13}

@Config

The @Config decorator tells the system to automatically inject the global application configuration object. The
decorator optionally takes a path to the variable desired to inject.

 1 class MyClass {
 2 @Config()
 3 private config?: any;
 4
 5 @Config("path:to:flag")
 6 private myFlag: boolean = false;
 7
 8 constructor(arg1: any, arg2: any, arg3: any) {
 9 this.var1 = arg1;
10 this.var2 = arg2;
11 this.var3 = arg3;
12 }
13}

@Logger

The @Logger decorator tells the system to automatically inject the application logging utility.

 1 class MyClass {
 2 @Logger
 3 private logger?: any;
 4
 5 constructor(arg1: any, arg2: any, arg3: any) {
 6 this.var1 = arg1;
 7 this.var2 = arg2;
 8 this.var3 = arg3;
 9 }
10}

Route Decorators

Below is the list of decorators available to the use for route handlers. They are exposed via the RouteDecorators
interface import.

1import { RouteDecorators } from "@composer-js/service-core";
2const { MongoRepository, Repository, RedisConnection } = RouteDecorators;

@MongoRepository

The @MongoRepository decorator is inject the Mongo Repository connection for the given class type.

1 class MyClass {
2 @MongoRepository(MyClass)
3 private repo?: Repo<MyClass>;
4}

@Repository

The @Repository decorator is inject the SQL Repository connection for the given class type.

1 class MyClass {
2 @Repository(MyClass)
3 private repo?: Repo<MyClass>;
4}

@RedisConnection

The @RedisConnection decorator is inject the redis connection for the given name.

1 class MyClass {
2 @RedisConnection("default")
3 private redis?: Redis;
4}

Background Services

Composer provides a simple mechanism for running asynchronous jobs as background services. Each background service job
is defined as a separate class in the jobs source folder. On startup, the server will scan this directory and
initialize each job that is defined in the config.ts with an accompanying schedule.

Scheduling Jobs

In the config.ts file is a section called jobs. There is a property named defaultSchedule. It’s value is
used for any subsequent background job which does not have an explicit schedule declared. The value takes a cron
formatted value.

For each background service that is desired to be run with the server, you must specify a new key=>object in the
configuration using the class name. For example, each Composer generated server project comes with a single
built-in background service called MetricsCollector.

jobs: {
 defaultSchedule: "* * * * * *",
 MetricsCollector: {
 schedule: "*/5 * * * * *",
 },
},

The above default configuration indicates that the MetricsCollector background service will be executed once every
5 minutes. The default schedule for all other services is to execute once per minute.

Anatomy of a Background Service

Each background service class extends the BackgroundService abstract class and must implement the following three
functions.

	run(): void

	start(): Promise<void>

	stop(): Promise<void>

Note that all functions can optionally return a Promise.

Example:

/**
 * The `MetricsCollector` provides a background service for collecting Prometheseus metrics for consumption by external
 * clients and compatible servers using the built-in `MetricsRoute` route handler.
 *
 * @author Jean-Philippe Steinmetz <info@acceleratxr.com>
 */
 export default class MetricsCollector extends BackgroundService {
 private registry: prom.Registry;

 constructor(config: any, logger: any) {
 super(config, logger);
 this.registry = prom.register;
 }

 public run(): void {
 // TODO
 }

 public async start(): Promise<void> {}

 public async stop(): Promise<void> {}
 }

run

The run function is executed on the configured schedule for the background job. It must take no parameters and
must not return any value. It can optionally return a Promise if the function is asynchronous. All work to be
performed in single pass must be started from this function.

start

At server startup, when all background services are being initialized, the start function will be executed for
each configured job. This allows for any initialization of defaults such as obtaining database connections, setting
initial values and so on. This function is only ever called once in the server’s lifetime.

stop

At server shutdown, the stop function is called for every running background service. This is used to perform any
last minute cleanup that the job may require to exit gracefully.

 _static/file.png

_static/plus.png

_static/logo.png
(

S0P OSETs

_static/minus.png

_images/petstore_example.png
@ Swagger it x o+

<« C & editorswaggerio

Apps D 300 4 Atlsin A AXR Confluence @ AWS Console RPVRTimeshest @ Quickbooks [Ripping < RPVRURA @ MultView Portsl A RPVR Adimin Console

@ SwaggerEditor. File v Editv Insetv Generate Server v Generate Client v

his is a sample server Petstore server.
1.0

Petstore @

http://composers..io/

info@acceleratxr. com’| This is a sample server Petstore server.

‘Apache 2.e
http: //unw.apache .org/1icenses/LICENSE-2.0. html!

mongodb.
mongodb: //localhost

jut_token
query
The IWT acce:

string

. default

query
The maximum number of results to return. Cannot exceed

30 /pet
1 integer
23 Ipet
3 skip L
3 query
36 page number, or offset, of the search results to search for and return
DELETE [WFS3
itz Ipet/{id}
sort)
query PUT EROZEE)]
A mapping of property to 1 or -1 that indicates the order to sort results
by. 1 indicates ascending order, -1 descending.
LIRSl /pet/{id}
tring
pet1d /store/order
The unique identifier of the
51 path
52 /store/order
53
54 string
55
56 id /store/order/{id}
57 The unique identifier of the object.
58 path

nav.xhtml

 Table of Contents

 		
 Composer.js

